OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15716–15725

High-speed switchable lens enables the development of a volumetric stereoscopic display

Gordon D. Love, David M. Hoffman, Philip J.W. Hands, James Gao, Andrew K. Kirby, and Martin S. Banks  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15716-15725 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (317 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stereoscopic displays present different images to the two eyes and thereby create a compelling three-dimensional (3D) sensation. They are being developed for numerous applications including cinema, television, virtual prototyping, and medical imaging. However, stereoscopic displays cause perceptual distortions, performance decrements, and visual fatigue. These problems occur because some of the presented depth cues (i.e., perspective and binocular disparity) specify the intended 3D scene while focus cues (blur and accommodation) specify the fixed distance of the display itself. We have developed a stereoscopic display that circumvents these problems. It consists of a fast switchable lens synchronized to the display such that focus cues are nearly correct. The system has great potential for both basic vision research and display applications.

© 2009 OSA

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(230.5440) Optical devices : Polarization-selective devices
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis

ToC Category:
Optical Devices

Original Manuscript: June 19, 2009
Revised Manuscript: August 13, 2009
Manuscript Accepted: August 17, 2009
Published: August 20, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Gordon D. Love, David M. Hoffman, Philip J.W. Hands, James Gao, Andrew K. Kirby, and Martin S. Banks, "High-speed switchable lens enables the development of a volumetric stereoscopic display," Opt. Express 17, 15716-15725 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Matsuki, H. Kani, F. Tatsugami, S. Yoshikawa, I. Narabayashi, S.-W. Lee, H. Shinohara, E. Nomura, and N. Tanigawa, “Preoperative assessment of vascular anatomy around the stomach by 3D imaging using MDCT before laparoscopy-assisted gastrectomy,” AJR Am. J. Roentgenol. 183(1), 145–151 (2004). [PubMed]
  2. Y. Hu and R. A. Malthaner, “The feasibility of three-dimensional displays of the thorax for preoperative planning in the surgical treatment of lung cancer,” Eur. J. Cardiothorac. Surg. 31(3), 506–511 (2007). [CrossRef] [PubMed]
  3. B. Mendiburu, “3d Movie Making: Stereoscopic Digital Cinema from Script to Screen”. Focal Press, Oxford, (2009)
  4. D. C. Hutchinson and H. W. Neal, “The design and implementation of a stereoscopic microdisplay television,” IEEE Trans. Consum. Electron. 54(2), 254–261 (2008). [CrossRef]
  5. J. P. Wann, and M. Mon-Williams, “Measurement of visual after effects following virtual environment exposure”. In K.M. Stanney (Ed.), Handbook of virtual environments: Design, implementation, and applications (pp. 731–749). Hillsdale, NJ: Lawrence Erlbaum Associates (2002).
  6. L. M. J. Meesters, W. A. Ijsselsteijn, and P. J. H. Seuntiens, “A survey of perceptual evaluations and requirements of three-dimensional TV,” IEEE Trans. Circ. Syst. Video Tech. 14(3), 381–391 (2004). [CrossRef]
  7. E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957). [PubMed]
  8. B. G. Cumming and S. J. Judge, “Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey,” J. Neurophysiol. 55(5), 896–914 (1986). [PubMed]
  9. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005). [CrossRef]
  10. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 1–30 (2008). [CrossRef] [PubMed]
  11. M. Emoto, T. Niida, and F. Okano, “Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television,” Journal of Display Technology 1(2), 328–340 (2005). [CrossRef]
  12. A. S. Percival, “The Prescribing of Spectacles”. Bristol: J. Wright & Sons. (1920)
  13. K. N. Ogle, T. G. Martens, and J. A. Dyer, “Oculomotor Imbalance in Binocular Vision and Fixation Disparity,” London: Henry Kingdom (1967)
  14. T. A. Nwodoth, and S. A. Benton, “Chidi holographic video system. In SPIE Proceedings on Practical Holography, 3956 (2000).
  15. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and ., “100 million-voxel volumetric display,” Proc. SPIE 712, 300–312 (2002). [CrossRef]
  16. A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279 (2004). [CrossRef]
  17. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004). [CrossRef]
  18. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197(3), 551–566 (1968). [PubMed]
  19. F. W. Campbell, “The depth of field of the human eye,” J. Mod. Opt. 4(4), 157–164 (1957).
  20. W. N. Charman and H. Whitefoot, “Pupil diameter and depth-of-field of human eye as measured by laser speckle,” Opt. Acta (Lond.) 24, 1211–1216 (1977). [CrossRef]
  21. B. T. Schowengerdt and E. J. Seibel, “True 3-D scanned voxel displays using single or multiple light sources,” J. Soc. Inf. Disp. 14(2), 135–143 (2006). [CrossRef]
  22. T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005). [CrossRef]
  23. A. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996). [CrossRef]
  24. S. Liu and H. Hua, “Time-multiplexed dual-focal plane head-mounted display with a liquid lens,” Opt. Lett. 34(11), 1642–1644 (2009). [CrossRef] [PubMed]
  25. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual frequency liquid crystal varifocal lens,” Jpn. J. Appl. Phys. 39(Part 1, No. 2A), 480–484 (2000). [CrossRef]
  26. Displaytech Inc, Model LV2500. www.displaytech.com
  27. Y. Nishimoto, “Variable Focal Length Lens”. US Patent. 4,783,152, Nov 8th (1988).
  28. A. K. Kirby, P. J. W. Hands, and G. D. Love, “Adaptive lenses based on polarization modulation. Proceedings of SPIE,6018-14 (2005).
  29. VRLogic, http://www.vrlogic.com/html/stereographics/stereographics.html
  30. E. F. Canon, 50mm f/1.8 lens. http://www.usa.canon.com/consumer/controller?act=ModelInfoAct&fcategoryid=152&modelid=7306
  31. A. Bradley and I. Ohzawa, “A comparison of contrast detection and discrimination,” Vision Res. 26(6), 991–997 (1986). [CrossRef] [PubMed]
  32. S. Mathews and P. B. Kruger, “Spatiotemporal transfer function of human accommodation,” Vision Res. 34(15), 1965–1980 (1994). [CrossRef] [PubMed]
  33. D. A. Owens, “A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings,” Vision Res. 20(2), 159–167 (1980). [CrossRef] [PubMed]
  34. E. M. Granger and K. N. Cupery, “Optical merit function (SQF), which correlates with subjective image judgments,” Photographic Science and Engineering 16, 221–230 (1972).
  35. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4(12), 2379–2394 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3352 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited