OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15726–15735

Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity

Ryan M. Camacho, Jasper Chan, Matt Eichenfield, and Oskar Painter  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15726-15735 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1998 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical forces in guided-wave nanostructures have recently been proposed as an effective means of mechanically actuating and tuning optical components. In this work, we study the properties of a photonic crystal optomechanical cavity consisting of a pair of patterned Si3N4 nanobeams. Internal stresses in the stoichiometric Si3N4 thin-film are used to produce inter-beam slot-gaps ranging from 560-40 nm. A general pump-probe measurement scheme is described which determines, self-consistently, the contributions of thermo-mechanical, thermo-optic, and radiation pressure effects. For devices with 40 nm slot-gap, the optical gradient force is measured to be 134 fN per cavity photon for the strongly coupled symmetric cavity supermode, producing a static cavity tuning greater than five times that of either the parasitic thermo-mechanical or thermo-optic effects.

© 2009 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.5580) Quantum optics : Quantum electrodynamics
(230.4685) Optical devices : Optical microelectromechanical devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: June 18, 2009
Revised Manuscript: August 8, 2009
Manuscript Accepted: August 19, 2009
Published: August 20, 2009

Ryan M. Camacho, Jasper Chan, Matt Eichenfield, and Oskar Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express 17, 15726-15735 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321(8), 1172-1176 (2008).
  2. I. Favero and K. Karrai, "Optomechanics of deformable optical cavities," Nat. Photonics 3(4), 201-205 (2009).
  3. A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51(17), 1550-1553 (1983).
  4. P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83(16), 3174-3177 (1999).
  5. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006). [PubMed]
  6. D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a micromechanical resonator," Nature 444, 75-78 (2006). [PubMed]
  7. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, "Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK," Phys. Rev. Lett. 99, 160801 (2007). [PubMed]
  8. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to micromechanical membrane," Nature 452(6), 72-75 (2008).
  9. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006).
  10. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30(22), 3042-3044 (2005).
  11. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Phys. Rev. Lett. 97, 023903 (2006). [PubMed]
  12. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nat. Photonics 1, 416 (2007).
  13. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic cicruits," Nature 456(27), 480-484 (2008).
  14. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photonic crystal optomechanical cavity," Nature doi:10.1038 (2009).
  15. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, "Near-field cavity optomechanics with nanomechanical oscillators," ArXiv:0904.4051v1 (2009).
  16. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical oscillation and cooling actuated by the optical gradient force," arXiv:0905.2716v1 (2009).
  17. W. H. P. Pernice, M. Li, and H. X. Tang, "Photothermal actuation in nanomechanical waveguide devices," J. Appl. Phys. 105, 014508 (2009).
  18. E. F. Nichols and G. F. Hull, "A preliminary communication on the pressure of heat and light radiation," Phys. Rev. 13, 307-320 (1901).
  19. C. H¨ohberger and K. Karrai, "Cavity cooling of a microlever," Nature 432(7020), 1002-1005 (2004).
  20. B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, "Optical excitation of nanoelectromechanical oscillators," Appl. Phys. Lett. 86, 193114 (2005).
  21. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99(9), 093902 (2007).
  22. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Phys. Rev. Lett. 99(9), 093901 (2007).
  23. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, coralling and spectral bonding of optical resonances through optically induced potentials," Nature Photonics 1(11), 658-665 (2007).
  24. J. Rosenberg, Q. Lin, K. J. Vahala, and O. Painter, "Static and DynamicWavelength Routing via the Gradient Optical Force," arXiv:0905.3336v1 (2009).
  25. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity," Opt. Express 17(5), 3802-3817 (2009).
  26. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, "Coupled photonic crystal nanobeam cavities," arXiv:0905.0109v1 (2009).
  27. S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, "High quality factor resonance at room temperature with nanostrings under high tensile stress," J. Appl. Phys. 99, 124304 (2006).
  28. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15(8), 4745-4752 (2007).
  29. C. K. Law, "Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium," Phys. Rev. A 49(1), 433-437 (1994).
  30. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microcavities excited via an integrated waveguide and fiber taper," Opt. Express 13(3), 801-820 (2005).
  31. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005). [PubMed]
  32. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, "All-optical high-speed signal processing with siliconorganic hybrid slot waveguides," Nature Photonics 3, 216-219 (2009).
  33. J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16(6), 4296-4301 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited