OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15747–15759

The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects

Klemens Stollberg, Andreas Brückner, Jacques Duparré, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 15747-15759 (2009)
http://dx.doi.org/10.1364/OE.17.015747


View Full Text Article

Enhanced HTML    Acrobat PDF (933 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the microoptical adaption of the natural superposition compound eye, which is termed “Gabor superlens”. Enabled by state-of-the-art microoptics technology, this well known principle has been adapted for ultra-compact imaging systems for the first time. By numerical ray tracing optimization, and by adding diaphragm layers and a field lens array, the optical performance of the Gabor superlens is potentially comparable to miniaturized conventional lens modules, such as currently integrated in mobile phones. However, in contrast to those, the Gabor superlens is fabricated using a standard microlens array technology with low sag heights and small diameter microlenses. Hence, there is no need for complex diamond turning for the generation of the master structures. This results in a simple and well controllable lens manufacturing process with the potential to high yield.

© 2009 OSA

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(110.2960) Imaging systems : Image analysis
(220.2740) Optical design and fabrication : Geometric optical design
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices
(150.6044) Machine vision : Smart cameras
(330.7324) Vision, color, and visual optics : Visual optics, comparative animal models

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: July 9, 2009
Revised Manuscript: July 30, 2009
Manuscript Accepted: July 30, 2009
Published: August 20, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Klemens Stollberg, Andreas Brückner, Jacques Duparré, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann, "The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects," Opt. Express 17, 15747-15759 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-15747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of Hybrid Microoptics Using UV Imprinting Process with Shrinkage Compensation Method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008). [CrossRef]
  2. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988). [CrossRef] [PubMed]
  3. G. A. Horridge, “The compound eye of insects,” Sci. Am. 237, 108–120 (1977). [CrossRef]
  4. J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995). [CrossRef]
  5. M. F. Land, “The optical structures of animal eyes,” Curr. Biol. 15(9), R319–R323 (2005). [CrossRef] [PubMed]
  6. R. Navarro and N. Franceschini, “On image quality of microlens arrays in diurnal superposition eyes,” J. Opt. A, Pure Appl. Opt. 7, L69–L78 (1998).
  7. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004). [CrossRef] [PubMed]
  8. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44(15), 2949–2956 (2005). [CrossRef] [PubMed]
  9. A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007). [CrossRef] [PubMed]
  10. L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005). [CrossRef] [PubMed]
  11. R. H. Anderson, “Close-up imaging of documents and displays with lens arrays,” Appl. Opt. 18(4), 477–484 (1979). [CrossRef] [PubMed]
  12. M. Kawazu and Y. Ogura, “Application of gradient-index fiber arrays to copying machines,” Appl. Opt. 19(7), 1105–1112 (1980). [CrossRef] [PubMed]
  13. M. Toyama and M. Takami, “Luminous intensity of a gradient-index lens array,” Appl. Opt. 21(6), 1013–1016 (1982). [CrossRef] [PubMed]
  14. N. F. Borrelli, R. H. Bellman, J. A. Durbin, and W. Lama, “Imaging and radiometric properties of microlens arrays,” Appl. Opt. 30(25), 3633–3642 (1991). [CrossRef] [PubMed]
  15. V. Shaoulov and J. P. Rolland, “Design and assessment of microlenslet-array relay optics,” Appl. Opt. 42(34), 6838–6845 (2003). [CrossRef] [PubMed]
  16. D. Gabor, UK Patent 541 753, (1940).
  17. M. C. Hutley, and R. F. Stevens, “The formation of Integral Images by Afocal Pairs of Lens Arrays (“Superlens”),” IOP Short Meeting Series 30, 147–154 (Bristol: IOP Publishing, 1991).
  18. C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the Gabor Superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999). [CrossRef]
  19. E. Hecht, Optics, 3rd edition (Addison-Wesley, 1994). [PubMed]
  20. W. J. Smith, Modern Optical Engineering, third edition (McGraw-Hill, 2000).
  21. N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), S1–S9 (2002). [CrossRef]
  22. J. Duparré, D. Radtke, and P. Dannberg, “Implementation of field lens arrays in beam-deflecting microlens array telescopes,” Appl. Opt. 43(25), 4854–4861 (2004). [CrossRef] [PubMed]
  23. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Exp. 13(3), 889–903 (2005). [CrossRef]
  24. N. F. Borrelli and L. D. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27(3), 476–479 (1988). [CrossRef] [PubMed]
  25. P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E-integration,” Proc. SPIE 4179(16), 137–145 (2000). [CrossRef]
  26. J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Exp. 13(26), 10539–10551 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (751 KB)     
» Media 2: AVI (2562 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited