OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15778–15789

Numerical analysis of directional coupling in dual-core microstructured optical fibers

Nicolas Mothe and Philippe Di Bin  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15778-15789 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present a numerical analysis of the coupling coefficients in dual-core air-silica microstructured optical fibers with π/6 symmetry. The calculations are based on an especially fitted application of the coupled mode theory for microstructured optical fibers. This method is compared with three other techniques, the supermode method, the beam propagation method and the equivalent fiber model, and is shown to be very computationally efficient. Our studies enable us to derive a formula linking the coupling coefficients to core separation according to the wavelength, the pitch and the hole diameter of the fiber structure.

© 2009 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 10, 2009
Revised Manuscript: May 12, 2009
Manuscript Accepted: June 29, 2009
Published: August 21, 2009

Philippe Di Bin and Nicolas Mothe, "Numerical analysis of directional coupling in dual-core microstructured optical fibers," Opt. Express 17, 15778-15789 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  2. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000). [CrossRef]
  3. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, "Experimental study of dual-core photonic crystal fibre," Electron. Lett. 36, 1358-1359 (2000). [CrossRef]
  4. I. Velchev and J. Toulouse, "Directional coupling and switching in multi-core microstructure fibers," in Conference on Lasers and Electro-Optics Technical digest(CD) (Optical Society of America, 2004), paper CTuV1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2004-CTuV1.
  5. M. Zghal, R. Cherif, and F. Bahloul, "Improving triangular-lattice photonic-crystal-fiber couplers by introducing geometric nonuniformities," Opt. Eng. 46, 095004 (2007). [CrossRef]
  6. K. Saitoh, Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express 11, 3188-3195(2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-24-3188. [CrossRef] [PubMed]
  7. D. M. Taylor, C. R. Bennet, T. J. Shepherd, L. F. Michaille, M. D. Nielsen, and H. R. Simonsen, "Demonstration of multi-core photonic crystal fibre in an optical interconnect," Electron. Lett. 42, 331-332 (2006). [CrossRef]
  8. K. L. Reichenbach and C. Xu, "Independent core propagation in two-core photonic crystal fibers resulting from structural nonuniformities," Opt. Express 13, 10336-10348 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-25-10336 [CrossRef] [PubMed]
  9. Y. Yan, J. Toulouse, I. Velchev, and S. V. Rotkin, "Decoupling and asymmetric coupling in triplecore photonic crystal fibers," J. Opt. Soc. Am. B 25, 1488-1495 (2008). [CrossRef]
  10. F. Fogli, L. Saccomandi, P. Rossi, G. Bellanca, and S. Trillo, "Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers," Opt. Express 10, 54-59 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-10-1-54 [PubMed]
  11. N. Florous, K. Saitoh, and M. Koshiba, "A novel approach for designing photonic crystal fiber splitters with polarization independent propagation characteristics," Opt. Express 13, 7365-7373 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-19-7365 [CrossRef] [PubMed]
  12. X. Yu, M. Liu, Y. Chung, M. Yan, and P. Shum, "Coupling coefficient of two-core microstructured optical fiber," Opt. Commun. 260, 164-169 (2006). [CrossRef]
  13. A. W. Snyder, and J. D. Love, Optical waveguide theory (Kluwer Academic Publishers, 2000).
  14. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. G. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  15. T. P. White, R. C. McPhedran, L. G. Botten, G. Smith, and C. Martijn de Sterke, "Calculation of air-guided modes in photonic crystal fibers using the multipole method," Opt. Express 9, 721-732 (2001). [CrossRef] [PubMed]
  16. P. J. Roberts and T. J. Shepherd, "The guidance properties of multi-core photonic crystal fibres," J. Opt. A, Pure Appl. Opt. 3, 133-140 (2001). [CrossRef]
  17. K. N. Park, and K. S. Lee, "Improved effective-index method for analysis of photonic crystal fibers," Opt. Lett. 30, 958-960 (2005). [CrossRef] [PubMed]
  18. D. Marcuse, Theory of dielectric optical waveguides, Y.-H. Pao and P. Kelley, ed. (Academic Press, New York, 1974).
  19. K. P. L. Reichenbach, "Numerical analysis and experimental study of fiber bundles and multi-core photonic crystal fibers for use in endoscopes," PhD dissertation, Cornell University (January 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited