OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15790–15798

Quasi-Light-Storage based on time-frequency coherence

Stefan Preußler, Kambiz Jamshidi, Andrzej Wiatrek, Ronny Henker, Christian-Alexander Bunge, and Thomas Schneider  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15790-15798 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: We show a method for distortion-free quasi storage of light which is based on the coherence between the spectrum and the time representation of pulse sequences. The whole system can be considered as a black box that stores the light until it will be extracted. In the experiment we delayed several 5 bit patterns with bit durations of 500ps up to 38ns. The delay can be tuned in fine and coarse range. The method works in the entire transparency range of optical fibers and only uses standard components of optical telecommunications. Hence, it can easily be integrated into existing systems.

© 2009 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 8, 2009
Revised Manuscript: August 19, 2009
Manuscript Accepted: August 19, 2009
Published: August 21, 2009

Stefan Preußler, Kambiz Jamshidi, Andrzej Wiatrek, Ronny Henker, Christian-Alexander Bunge, and Thomas Schneider, "Quasi-Light-Storage based on time-frequency coherence," Opt. Express 17, 15790-15798 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, and D. J. Gauthier, “Slow and Fast Light,” in Progress in Optics 43, E Wolf, ed. (Elsevier, Amsterdam, 2002) 497 – 530.
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003). [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  5. S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999). [CrossRef]
  6. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997). [CrossRef]
  7. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 5(1), 10–18 (2008). [CrossRef]
  8. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005). [CrossRef]
  9. R. S. Tucker, P. C. Ku, and C. J. C. Hasnain, “Slow-Light Optical Buffers: Capabilities and Fundamental Limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005). [CrossRef]
  10. E. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express 13(4), 1334–1345 (2005). [CrossRef] [PubMed]
  11. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  12. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005). [CrossRef] [PubMed]
  13. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005). [CrossRef] [PubMed]
  14. Z. Dutton and L. V. Hau, “Storing and processing optical information with ultra-slow light in Bose-Einstein condensates,” Phys. Rev. A 70(5), 053831 (2004). [CrossRef]
  15. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007). [CrossRef] [PubMed]
  16. T. Sakamoto, T. Kawanishi, and M. Izutsu, “19x10 GHz Electro-Optic Ultra-Flat Frequency Comb Generation Only Using Single Conventional Mach-Zehnder Modulator,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science (Long Beach, CA, 2006), pp. 1–2
  17. G. A. Sefler and K.-I. Kitayama, “Frequency Comb Generation by Four-Wave Mixing and the Role of Fiber Dispersion,” J. Lightwave Technol. 16(9), 1596–1605 (1998). [CrossRef]
  18. T. Schneider, M. Junker, and K. U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B 23(6), 1012–1019 (2006). [CrossRef]
  19. T. Schneider, Nonlinear Optics in Telecommunications (Springer-Verlag, Berlin, 2004).
  20. T. Schneider, M. Junker, and K. U. Lauterbach, “Potential ultrawide slow-light bandwidth enhancement,” Opt. Express 14(23), 11082 (2006). [CrossRef] [PubMed]
  21. R. Henker, A. Wiatrek, K.-U. Lauterbach, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Group velocity dispersion reduction in fibre-based slow light systems via stimulated Brillouin scattering,” Electron. Lett. 44(20), 1185–1186 (2008). [CrossRef]
  22. P. Shen, N. J. Gomes, P. A. Davies, and W. P. Shillue, Generation of 2 THz Span Optical Comb in a Tunable Fiber Ring Based Optical Frequency Comb Generator” in Proceedings of IEEE International Topical Meeting on Microwave Photonics (Fairmont Empress Hotel, Victoria, BC, 2007), 46–49.
  23. A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited