OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15799–15807

Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide

Lijun Ma, Oliver Slattery, Tiejun Chang, and Xiao Tang  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15799-15807 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have experimentally implemented a non-degenerate sequential time-bin entangled photon-pair source using a periodically poled potassium titanyl phosphate waveguide at a clock rate of 1 GHz. The wavelengths of the signal and idler are 895 nm and 1310 nm, which are suitable for local and long distance optical communications, respectively and the 895 nm signal is also suitable for quantum memory research. A silicon avalanche photodiode is used to detect the photons at 895 nm while a periodically poled lithium niobate waveguide based up-conversion detector is used to detect the photons at 1310 nm. The measured entangled-photon-pair flux rate is 650 Hz and the fringe visibility for two-photon interference is 79.4% without noise subtraction.

© 2009 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: May 29, 2009
Revised Manuscript: July 8, 2009
Manuscript Accepted: August 13, 2009
Published: August 21, 2009

Lijun Ma, Oliver Slattery, Tiejun Chang, and Xiao Tang, "Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide," Opt. Express 17, 15799-15807 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999). [CrossRef]
  2. S. Tanzilli, W. Tittel, H. Riedmatten, H. Zbinden, P. Baldi, M. Micheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002). [CrossRef]
  3. I. Marcikic, H. Riedmattern, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002). [CrossRef]
  4. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. 93(18), 180502 (2004). [CrossRef] [PubMed]
  5. H. Takesue and K. Inoue, “Generation of 1.5-μm band entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005). [CrossRef]
  6. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15(21), 13957–13964 (2007). [CrossRef] [PubMed]
  7. Q. Zhang, C. Langrock, H. Takesue, X. Xie, M. Fejer, and Y. Yamamoto, “Generation of 10-GHz clock sequential time-bin entanglement,” Opt. Express 16(5), 3293–3298 (2008). [CrossRef] [PubMed]
  8. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989). [CrossRef] [PubMed]
  9. H. Xu, L. Ma, and X. Tang, “Low noise PPLN-based single photon detector”, SPIE Optics East 07,” Proc. SPIE 6780, 67800U–1 (2007). [CrossRef]
  10. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express 15(12), 7247–7260 (2007). [CrossRef] [PubMed]
  11. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16(24), 19557–19561 (2008). [CrossRef] [PubMed]
  12. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16(8), 5776–5781 (2008). [CrossRef] [PubMed]
  13. J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited