OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15904–15910

Near infrared-emitting Er- and Yb-Er- doped CeF3 nanoparticles with no visible upconversion

Mei Chee Tan, G. A. Kumar, and Richard E. Riman  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15904-15910 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, a host which interacts and enhanced energy transfer to the luminescent center such that it facilitates the infrared emission while avoiding undesired emissions was found. An intense emission at ~1530 nm with no other visible emissions was observed in Er- and Yb-Er- doped CeF3 nanoparticles upon excitation at ~975 nm. The average measured luminescence lifetimes of the ~1530 nm emission for heat-treated CeF3:Er and CeF3:Yb,Er nanoparticles was ~4.5−6.5 ms, with internal quantum efficiencies up to ~52−75%. These nanoparticles offer a vast range of potential applications, which include optical amplifiers, waveguides, laser materials and infrared imaging probes.

© 2009 OSA

OCIS Codes
(000.1570) General : Chemistry
(160.0160) Materials : Materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:

Original Manuscript: May 7, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: June 16, 2009
Published: August 24, 2009

Mei Chee Tan, G. A. Kumar, and Richard E. Riman, "Near infrared-emitting Er- and Yb-Er- doped CeF3 nanoparticles with no visible upconversion," Opt. Express 17, 15904-15910 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002). [CrossRef]
  2. L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002). [CrossRef]
  3. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004). [CrossRef]
  4. A. Jha, “A review of visible, near-IR and mid-IR transitions in rare-earth doped glass waveguides for remote sensing and LIDAR,” Proc. SPIE 6409, 650918.1-650918.12 (2006).
  5. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006). [CrossRef]
  6. Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Mol. Imaging 2(1), 50–64 (2003). [CrossRef] [PubMed]
  7. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. 17, 515–522 (2005). [CrossRef]
  8. G. A. Kumar, C. W. Chen, J. Ballato, and R. E. Riman, “Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites,” Chem. Mater. 19(6), 1523–1528 (2007). [CrossRef]
  9. G. A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, and F. C. J. M. van Veggel, “Lanthanide (III)-doped nanoparticles that emit in the near-infrared,” Adv. Mater. 14(16), 1147–1150 (2002). [CrossRef]
  10. R. C. Powell, Physics of Solid-State Laser Materials, (Springer-Verlag, 1998).
  11. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: Fundamentals and technology, (Academic Press, 1999)
  12. B. Simondi-Teisseire, B. Viana, D. Vivien, and A. M. Lejus, “Yb3+ to Er3+ energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca2Al2SiO7,” Opt. Mater. 6(4), 267–274 (1996). [CrossRef]
  13. J. L. Sommerdijk and A. Bril, “Phosphors for the conversion of infrared radiation into visible light,” Philips Tech. Rev. 34, 1–32 (1974).
  14. S. Heer, K. Kompe, H. U. Gudel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater. 16, 2102–2105 (2004). [CrossRef]
  15. G. A Kumar, R Riman, E Snitzer, and J Ballato, “Solution synthesis and spectroscopic characterization of high Er3+ content LaF3 for broadband 1.5 μm amplification,” J. Appl. Phys. 95, 40–47 (2004). [CrossRef]
  16. G. A. Kumar, R. Riman, S. C. Chae, Y. N. Jang, I. K. Bae, and H. S. Moon, “Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification,” J. Appl. Phys. 95(7), 3243–3249 (2004). [CrossRef]
  17. G. S. Yi and G. M. Chow, “Colloidal LaF3: Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence,” J. Mater. Chem. 15(41), 4460–4464 (2005). [CrossRef]
  18. G. S. Yi and G. M. Chow, “Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006). [CrossRef]
  19. G. A. Kumar, C. W. Chen, and R. E. Riman, “Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals,” Appl. Phys. Lett. 90(9), 093123.1–093123, 3 (2007). [CrossRef]
  20. Z. Meng, T. Yoshimura, K. Fukue, M. Higashihata, Y. Nakata, and T. Okada, “Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ co-doping,” J. Appl. Phys. 88(5), 2187–2190 (2000). [CrossRef]
  21. Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88(7), 3832–3839 (2000). [CrossRef]
  22. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001). [CrossRef]
  23. K. Nagamatsu, S. Nagaoka, M. Higashihata, N. J. Vasa, Z. Meng, S. Buddhudu, T. Okada, Y. Kubota, N. Nishimura, and T. Teshima, “Influence of Yb3+ and Ce3+ co-doping on fluorescence characteristics of Er3+-doped fluoride glass under 980 nm excitation,” Opt. Mater. 27(2), 337–342 (2004). [CrossRef]
  24. X. Wang, J. Zhuang, Q. Peng, and Y. Li, “Hydrothermal synthesis of rare-earth fluoride nanocrystals,” Inorg. Chem. 45(17), 6661–6665 (2006). [CrossRef] [PubMed]
  25. B. D. Cullity, and S. R. Stock, Elements of X-ray diffraction, 3rd edition (Prentice Hall, 2001)
  26. N. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972). [CrossRef]
  27. H. Gerlinger and G. Schaack, “Crystal-field states of the Ce3+ ion in CeF3: A demonstration of vibronic interaction in ionic rare-earth compounds,” Phys. Rev. B 33(11), 7438–7450 (1986). [CrossRef]
  28. M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers, (Marcel Dekker, Inc., 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited