OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15932–15946

Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification

Paola Taroni, Antonio Pifferi, Elena Salvagnini, Lorenzo Spinelli, Alessandro Torricelli, and Rinaldo Cubeddu  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15932-15946 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Our multi-wavelength time-resolved optical mammograph was upgraded to improve its overall performances and extend its spectral coverage up to 1060 nm, with the aim of increasing the measurement sensitivity to the content of collagen in breast tissue. Late-gated intensity and reduced scattering images are routinely displayed for diagnostic purposes. Maps of tissue constituents (lipid, water and collagen) and blood parameters (total hemoglobin content and blood oxygenation) are built to highlight spatial changes due to physiological and pathological reasons. The upgraded instrument was tested on tissue phantoms. Then images were collected at 7 wavelengths (635-1060 nm) from 10 healthy volunteers. Average collagen content correlated with breast density whenever x-ray mammograms were available (6 subjects).

© 2009 OSA

OCIS Codes
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 22, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: August 13, 2009
Published: August 24, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Paola Taroni, Antonio Pifferi, Elena Salvagnini, Lorenzo Spinelli, Alessandro Torricelli, and Rinaldo Cubeddu, "Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification," Opt. Express 17, 15932-15946 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005). [CrossRef] [PubMed]
  2. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt. 46(17), 3628–3638 (2007). [CrossRef] [PubMed]
  3. X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005). [CrossRef] [PubMed]
  4. V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Kobrunner, L. Götz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8(3), 517–524 (2003). [CrossRef] [PubMed]
  5. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003). [CrossRef] [PubMed]
  6. H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9(2), 186–194 (2002). [CrossRef] [PubMed]
  7. X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11(1), 53–60 (2004). [CrossRef] [PubMed]
  8. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005). [CrossRef] [PubMed]
  9. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. A. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10(2), 024033 (2005). [CrossRef] [PubMed]
  10. N. G. Chen, M. Huang, H. Xia, D. Piao, E. Cronin, and Q. Zhu, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9(3), 504–510 (2004). [CrossRef] [PubMed]
  11. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005). [CrossRef] [PubMed]
  12. C. Li, H. Zhao, B. Anderson, and H. Jiang, “Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system,” Med. Phys. 33(3), 627–636 (2006). [CrossRef] [PubMed]
  13. S. D. Konecky, R. Choe, A. Corlu, K. Lee, R. Wiener, S. M. Srinivas, J. R. Saffer, R. Freifelder, J. S. Karp, N. Hajjioui, F. Azar, and A. G. Yodh, “Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography,” Med. Phys. 35(2), 446–455 (2008). [CrossRef] [PubMed]
  14. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys. Med. Biol. 53(23), 6713–6727 (2008). [CrossRef] [PubMed]
  15. S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12(2), 020509 (2007). [CrossRef] [PubMed]
  16. S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, and P. H. Watson, “Mammographic density is related to stroma and stromal proteoglycan expression,” Breast Cancer Res. 5(5), R129–R135 (2003). [CrossRef] [PubMed]
  17. Y. P. Guo, L. J. Martin, W. Hanna, D. Banerjee, N. Miller, E. Fishell, R. Khokha, and N. F. Boyd, “Growth factors and stromal matrix proteins associated with mammographic densities,” Cancer Epidemiol. Biomarkers Prev. 10(3), 243–248 (2001). [PubMed]
  18. C. Byrne, “Studying mammographic density: implications for understanding breast cancer,” J. Natl. Cancer Inst. 89(8), 531–533 (1997). [CrossRef] [PubMed]
  19. N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, and M. J. Yaffe, “Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention,” Curr. Oncol. Rep. 3(4), 314–321 (2001). [CrossRef] [PubMed]
  20. J. Couzin, “Breast cancer. Dissecting a hidden breast cancer risk,” Science 309(5741), 1664–1666 (2005). [CrossRef] [PubMed]
  21. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12(1), 014021 (2007). [CrossRef] [PubMed]
  22. P. Taroni, A. Pifferi, A. Torricelli, L. Spinelli, G. M. Danesini, and R. Cubeddu, “Do shorter wavelengths improve contrast in optical mammography?” Phys. Med. Biol. 49(7), 1203–1215 (2004). [CrossRef] [PubMed]
  23. P. Taroni, L. Spinelli, A. Torricelli, A. Pifferi, G. M. Danesini, and R. Cubeddu, “Multi-wavelength time domain optical mammography,” Technol. Cancer Res. Treat. 4(5), 527–538 (2005). [PubMed]
  24. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003). [CrossRef] [PubMed]
  25. M. S. Patterson, B. Chance, and B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  26. R. C. Haskell, L. O. Svasaand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994). [CrossRef]
  27. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997). [CrossRef] [PubMed]
  28. A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998). [CrossRef]
  29. C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14(5), 1888–1898 (2006). [CrossRef] [PubMed]
  30. S. Prahl, Oregon Medical Laser Center website http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  31. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.652.5µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993). [CrossRef] [PubMed]
  32. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005). [CrossRef] [PubMed]
  33. J. Wang, S. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48(10), D198–D207 (2009). [CrossRef] [PubMed]
  34. O. Steinkellner, A. Hagen, C. Stadelhoff, D. Grosenick, R. Macdonald, H. Rinneberg, R. Ziegler, and T. Nielsen, “Recording of Artifact-Free Reflection Data with a Laser and Fluorescence Scanning Mammograph for Improved Axial Resolution”, in Biomedical Optics/Digital Holography and Three-Dimensional Imaging/Laser Applications to Chemical, Security and Environmental Analysis on CD-ROM (The Optical Society of America, Washington, DC, 2008), BMD45.
  35. A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63(1), 48–56 (2009). [CrossRef] [PubMed]
  36. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths,” Proc. SPIE 7174, 717424 (2009). [CrossRef]
  37. I. T. Gram, E. Funkhouser, and L. Tabár, “The Tabár classification of mammographic parenchymal patterns,” Eur. J. Radiol. 24(2), 131–136 (1997). [CrossRef] [PubMed]
  38. A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007). [CrossRef] [PubMed]
  39. A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007). [CrossRef] [PubMed]
  40. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003). [CrossRef] [PubMed]
  41. D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 1), 061908 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited