OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15947–15958

Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions

Zhi-Yong Li, Dan-Xia Xu, W. Ross McKinnon, Siegfried Janz, Jens H. Schmid, Pavel Cheben, and Jin-Zhong Yu  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15947-15958 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design and numerical simulation results for a silicon waveguide modulator based on carrier depletion in a linear array of periodically interleaved PN junctions that are oriented perpendicular to the light propagation direction. In this geometry the overlap of the optical waveguide mode with the depletion region is much larger than in designs using a single PN junction aligned parallel to the waveguide propagation direction. Simulations predict that an optimized modulator will have a high modulation efficiency of 0.56 V·cm for a 3V bias, with a 3 dB frequency bandwidth of over 40 GHz. This device has a length of 1.86 mm with a maximum intrinsic loss of 4.3 dB at 0V bias, due to free carrier absorption.

© 2009 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators
(130.4110) Integrated optics : Modulators

ToC Category:

Original Manuscript: June 30, 2009
Revised Manuscript: August 9, 2009
Manuscript Accepted: August 10, 2009
Published: August 24, 2009

Zhi-Yong Li, Dan-Xia Xu, W. Ross McKinnon, Siegfried Janz, Jens H. Schmid, Pavel Cheben, and Jin-Zhong Yu, "Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions," Opt. Express 17, 15947-15958 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  3. L. C. Kimerling, A. B. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, C. Hong, M. F. Lipson, J. Liu, J. Michel, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, A. E. White, and C. Wong, “Recent advances in CMOS compatible integrated photonics,” Proc. SPIE 6125, 612502 (2006). [CrossRef]
  4. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  5. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  6. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  7. S. J. Spector, M. E. Grein, R. T. Schulein, M. W. Geis, J. U. Yoon, D. E. Lennon, F. Gan, F. X. Kartner, and T. M. Lyszczarz, “Compact carrier injection based Mach-Zehnder modulator in silicon,” in Technical Digest of 2007 Integrated Photonics Research, ITuE5 (2007).
  8. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  9. F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005). [CrossRef] [PubMed]
  10. A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  11. F. Y. Gardes, K. L. Tsakmakidis, D. Thomson, G. T. Reed, G. Z. Mashanovich, O. Hess, and D. Avitabile, “Micrometer size polarization independent depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 15(9), 5879–5884 (2007). [CrossRef] [PubMed]
  12. D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25 µm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE 6125, 61250E (2006). [CrossRef]
  13. T. Pinguet, V. Sadagopan, A. Mekis, B. Analui, D. Kucharski, and S. Gloeckner, “A 1550 nm, 10 Gbps optical modulator with integrated driver in 130 nm CMOS, 4th IEEE International Conference on Group IV Photonics, ThA2, 186-188 (2007).
  14. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express 14(22), 10838–10843 (2006). [CrossRef] [PubMed]
  15. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008). [CrossRef] [PubMed]
  16. Z. Y. Li, D.-X. Xu, R. Mckinnon, S. Janz, J. H. Schmid, J. Lapointe, P. Cheben, and J.Z. Yu, “Low Driving-Voltage Optical Modulator Based on Carrier Depletion in Silicon with Periodically Interleaved P-N Junctions”, 5th IEEE International conference on Group IV Photonics, WA5, 13–15 (2008).
  17. Silvaco International, 4701 Patrick Henry drive, Bldg 1, Santa Clara, CA 94054, http://www.silvaco.com .
  18. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (New York: Wiley, 1997), Chap. 5.
  19. C. C. Wang, M. Currie, S. Alexandrou, and T. Y. Hsiang, “Ultrafast all-silicon light modulator,” Opt. Lett. 19(18), 1453–1455 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited