OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16017–16026

10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers

Kevin Knabe, Shun Wu, Jinkang Lim, Karl A. Tillman, Philip S. Light, Francois Couny, Natalie Wheeler, Rajesh Thapa, Andrew M. Jones, Jeffrey W. Nicholson, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16017-16026 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Saturated absorption spectroscopy reveals the narrowest features so far in molecular gas-filled hollow-core photonic crystal fiber. The 48-68 μm core diameter of the kagome-structured fiber used here allows for 8 MHz full-width half-maximum sub-Doppler features, and its wavelength-insensitive transmission is suitable for high-accuracy frequency measurements. A fiber laser is locked to the 12C2H2ν1 + ν3 P(13) transition inside kagome fiber, and compared with frequency combs based on both a carbon nanotube fiber laser and a Cr:forsterite laser, each of which are referenced to a GPS-disciplined Rb oscillator. The absolute frequency of the measured line center agrees with those measured in power build-up cavities to within 9.3 kHz (1 σ error), and the fractional frequency instability is less than 1.2 × 10 −11 at 1 s averaging time.

© 2009 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:

Original Manuscript: June 26, 2009
Revised Manuscript: August 17, 2009
Manuscript Accepted: August 21, 2009
Published: August 25, 2009

Kevin Knabe, Shun Wu, Jinkang Lim, Karl A. Tillman, Philip S. Light, Francois Couny, Natalie Wheeler, Rajesh Thapa, Andrew M. Jones, Jeffrey W. Nicholson, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin, "10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers," Opt. Express 17, 16017-16026 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Czajkowski, A. A. Madej, and P. Dube, “Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the ν1 + ν3 overtone band of 13C2H2,” Opt. Commun. 234(1-6), 259–268 (2004). [CrossRef]
  2. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 Saturated-Absorption Lines at 1.5 µm,” Opt. Lett. 19(11), 840–842 (1994). [CrossRef] [PubMed]
  3. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region,” Appl. Phys. B 80(8), 977–983 (2005). [CrossRef]
  4. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, “Accurate absolute frequencies of the ν1 + ν3 band of 13C2H2 determined using an infrared mode-locked Cr: YAG laser frequency comb,” J. Opt. Soc. Am. B 23(4), 741–749 (2006). [CrossRef]
  5. H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of 13C2H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56(2), 509–512 (2007). [CrossRef]
  6. M. Musha, Y. Tamura, K. Nakagawa, and K. Ueda, “Practical optical frequency measurement system around 1.5 µm based on an acetylene-stabilized laser-locked optical frequency comb,” Opt. Commun. 272(1), 211–216 (2007). [CrossRef]
  7. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005). [CrossRef] [PubMed]
  8. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17(7), 1263–1270 (2000). [CrossRef]
  9. A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16(6), 3976–3985 (2008). [CrossRef] [PubMed]
  10. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber,” Phys. Rev. Lett. 97(2), 023603 (2006). [CrossRef] [PubMed]
  11. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902 (2007). [CrossRef] [PubMed]
  12. K. Knabe, J. Lim, K. Tillman, R. Thapa, F. Couny, P. S. Light, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “Stability of an Acetylene Frequency Reference inside Kagome Structured Hollow-Core Photonic Crystal Fiber,” in Proceedings of CLEO CWB5 (2009).
  13. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber,” Opt. Lett. 32(10), 1323–1325 (2007). [CrossRef] [PubMed]
  14. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005). [CrossRef] [PubMed]
  15. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008). [CrossRef] [PubMed]
  16. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002). [CrossRef] [PubMed]
  17. Crystal Fibre A/S, http://www.crystal-fibre.com/ .
  18. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31(16), 2489–2491 (2006). [CrossRef] [PubMed]
  19. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006). [CrossRef] [PubMed]
  20. G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983). [CrossRef]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31(2), 97–105 (1983). [CrossRef]
  22. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical Heterodyne Saturation Spectroscopy,” Appl. Phys. Lett. 39(9), 680–682 (1981). [CrossRef]
  23. J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17(16), 14115–14120 (2009). [CrossRef] [PubMed]
  24. Y. Wang, J. Lim, R. Amezcua-Correa, J. C. Knight, and B. R. Washburn, “Sub-33 fs Pulses from an All-Fiber Parabolic Amplifier Employing Hollow-Core Photonic Bandgap Fiber,” in Proceedings of Frontiers In Optics FWF5 (2008).
  25. P. T. Systems, http://www.ptsyst.com/ .
  26. S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultra. Ferr. Freq. Contr. 54(5), 918–925 (2007). [CrossRef]
  27. J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Sources: Fifteen Years of Progress,” in Proceeding of the IEEE (Institute of Electrical and Electronics Engineers, New York, 1968), pp. 1048–1075.
  28. K. A. Tillman, R. Thapa, B. R. Washburn, and K. L. Corwin, “Significant Carrier Envelope Offset Frequency Linewidth Narrowing in a Prism-Based Cr:Forsterite Frequency Comb ” in Proceedings of CLEO CTuC5 (2009).
  29. L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007). [CrossRef]
  30. C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1 + ν3 combination band of 12C2H2 in the 1.5 µm region,” J. Mol. Spectrosc. 234(1), 143–148 (2005). [CrossRef]
  31. A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, “Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1 + ν3 band of 12C2H2 determined with laser frequency comb interval measurements,” J. Opt. Soc. Am. B 23(10), 2200–2208 (2006). [CrossRef]
  32. J. L. Hall and C. J. Borde, “Shift and broadening of saturated absorption resonances due to curvature of laser wave fronts,” Appl. Phys. Lett. 29(12), 788–790 (1976). [CrossRef]
  33. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, “Dispersion-like signals in velocity-selective saturated-absorption spectroscopy,” Opt. Commun. 192(1-2), 49–55 (2001). [CrossRef]
  34. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 -1809 (1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited