OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16046–16058

A tunable multi-band metamaterial design using micro-split SRR structures

Evren Ekmekci, Kagan Topalli, Tayfun Akin, and Gonul Turhan-Sayan  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16046-16058 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the results of a feasibility study for the design of multi-band tunable metamaterials based on the use of micro-split SRR (MSSRR) structures. In this study, we have designed and constructed a conventional split-ring resonator (SRR) unit cell (type A) and two modified SRR unit cells having the same design parameters except that they contain two (type B) or four (type C) additional micro-splits on the outer square ring, along the arm having the main split. Transmission characteristics of the resulting MSSRR cells are obtained both numerically and experimentally and compared to those of the ordinary SRR unit cell. It is observed that the presence of the additional micro-splits leads to the increase of resonance frequency by substantial amounts due to the series capacitance effect. Next, we have designed and constructed 2×2 homogeneous arrays of magnetic resonators which consist of the same type of cells (either A, or B, or C). Such MSSRR blocks are found to provide only a single frequency band of operation around the magnetic resonance frequency of the related unit cell structure. Finally, we have designed and constructed 2×2 and 3×2 inhomogeneous arrays which contain columns of different types of metamaterial unit cells. We have shown that these inhomogeneous arrays provide two or three different frequency bands of operations due to the use of different magnetic resonators together. The number of additional micro-splits in a given MSSRR cell can be interactively controlled by various switching technologies to modify the overall metamaterial topology for the purpose of activating different sets of multiple resonance frequencies. In this context, use of electrostatically actuated RF MEMS switches is discussed, and their implementation is suggested as a future work, to control the states of micro-splits in large MSSRR arrays to realize tunable multi-band metamaterials.

© 2009 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(350.4010) Other areas of optics : Microwaves
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: July 6, 2009
Revised Manuscript: August 16, 2009
Manuscript Accepted: August 19, 2009
Published: August 26, 2009

Evren Ekmekci, Kagan Topalli, Tayfun Akin, and Gonul Turhan-Sayan, "A tunable multi-band metamaterial design using micro-split SRR structures," Opt. Express 17, 16046-16058 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998). [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  4. J. D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69(1), 014402 (2004). [CrossRef]
  5. E. Ekmekci, and G. Turhan-Sayan, “Investigation of Permittivity and Permeability for a Novel V-Shaped Metamaterial Using Simulated S-Parameters,” in Proceedings of 5th International Conference on Electrical and Electronics Engineering, (The Chamber of Turkish Electrical Engineers, Bursa, Turkey, 2007), pp. 251–254.
  6. I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of labyrinth-based left-handed metamaterials,” Opt. Express 13(25), 10238–10247 (2005). [CrossRef] [PubMed]
  7. E. Özbay, I. Bulu, and H. Caglayan, “Transmission, reflection and focusing properties of labyrinth based left-handed metamaterials,” Phys. Status Solidi 244(4), 1202–1210 (2007) . [CrossRef]
  8. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005). [CrossRef]
  9. Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 014909 (2007). [CrossRef]
  10. E. Ekmekci and G. Turhan-Sayan, “Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters,” Prog. Electromagn. Res. B 12, 35–62 (2009). [CrossRef]
  11. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007). [CrossRef]
  12. F. Zhang, L. Kang, Q. Zhao, J. Zhou, X. Zhao, and D. Lippens, “Magnetically tunable left handed metamaterials by liquid crystal orientation,” Opt. Express 17(6), 4360–4366 (2009). [CrossRef] [PubMed]
  13. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009). [CrossRef]
  14. O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84(7), 1198–1200 (2004). [CrossRef]
  15. I. Gil, J. Bonache, J. García- García, and F. Martín, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2665–2674 (2006). [CrossRef]
  16. H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006). [CrossRef]
  17. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007). [CrossRef]
  18. D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007). [CrossRef]
  19. A. Vélez, J. Bonache, and F. Martín, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines,” IEEE Microw. Wirel. Compon. Letters 18(1), 2008.
  20. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008). [CrossRef] [PubMed]
  21. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008). [CrossRef] [PubMed]
  22. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008). [CrossRef]
  23. M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009). [CrossRef]
  24. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]
  25. K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008). [CrossRef]
  26. J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008). [CrossRef] [PubMed]
  27. J. Han and A. Lakhtakia, “Semiconductor split,ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009). [CrossRef]
  28. I. Gil, F. Martín, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials,” Electron. Lett. 43(21), 1153 (2007). [CrossRef]
  29. T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using MEMS switches,” IEEE Antennas Wirel. Propag. Lett. 6(11), 401–404 (2007). [CrossRef]
  30. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic materials,” Phys. Rev. B 69(24), 241101 (2004). [CrossRef]
  31. R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008). [CrossRef] [PubMed]
  32. D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007). [CrossRef] [PubMed]
  33. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008). [CrossRef] [PubMed]
  34. K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008). [CrossRef]
  35. G. M. Rebeiz, RF MEMS theory, design, and technology, (John Wiley & Sons, Hoboken, NJ, 2003).
  36. A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, “Electromechanical carbon nanotube switches for high-frequency applications,” Nano Lett. 6(5), 942–947 (2006). [CrossRef] [PubMed]
  37. F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007). [CrossRef]
  38. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91(7), 071121 (2007). [CrossRef]
  39. F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008). [CrossRef]
  40. E. Ekmekci, and G. Turhan-Sayan, “Reducing the electrical size of magnetic metamaterial resonators by geometrical modifications: a comparative study for single-sided and double-sided multiple SRR, spiral and U-Spiral resonators,” in Proceedings of IEEE International Symposium on Antennas & Propagation, (IEEE Antennas and Propagation Society, San Diego, 2009), pp. 1484–1487.
  41. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited