OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16092–16099

Terahertz generation from graphite

Gopakumar Ramakrishnan, Reshmi Chakkittakandy, and Paul C. M. Planken  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16092-16099 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Generation of subpicosecond terahertz pulses is observed when graphite surfaces are illuminated with femtosecond near-infrared laser pulses. The nonlinear optical generation of THz pulses from graphite is unexpected since, in principle, the material possesses a centre of inversion symmetry. Experiments with highly oriented pyrolytic graphite crystals suggest that the THz radiation is generated by a transient photocurrent in a direction normal to the graphene planes, along the c-axis of the crystal. This is supported by magnetic-field induced changes in the THz electric-field polarization, and consequently, the direction of the photocurrent. We show that other forms of graphite, such as a pencil drawing on paper, are also capable of emitting THz pulses.

© 2009 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(300.6270) Spectroscopy : Spectroscopy, far infrared
(300.6495) Spectroscopy : Spectroscopy, teraherz
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:

Original Manuscript: July 17, 2009
Revised Manuscript: August 24, 2009
Manuscript Accepted: August 24, 2009
Published: August 26, 2009

Gopakumar Ramakrishnan, Reshmi Chakkittakandy, and Paul C. M. Planken, "Terahertz generation from graphite," Opt. Express 17, 16092-16099 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Brumfiel, “Graphene gets ready for the big time,” Nature 458(7237), 390–391 (2009). [PubMed]
  2. K. S. Krishnan and N. Ganguly, “Large anisotropy of the electrical conductivity of graphite,” Nature 144(3650), 667 (1939).
  3. M. Zanini, D. Grubisic, and J. E. Fischer, “Optical anisotropy of highly oriented pyrolytic graphite,” Phys. Status Solidi, B Basic Res. 90(1), 151–156 (1978).
  4. B. T. Kelly, “Physics of graphite,” Applied Science Publishers Ltd., Essex (1981).
  5. W. N. Reynolds, “Physical properties of graphite,” Elsevier Publishing Co. Ltd., Amsterdam (1968).
  6. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009). [PubMed]
  7. K. Seibert, G. C. Cho, W. Kütt, H. Kurz, D. H. Reitze, J. I. Dadap, H. Ahn, M. C. Downer, and A. M. Malvezzi, “Femtosecond carrier dynamics in graphite,” Phys. Rev. B 42(5), 2842–2851 (1990).
  8. G. M. Mikheev, R. G. Zonov, A. N. Obraztov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” Appl. Phys. Lett. 84(24), 4854–4856 (2004).
  9. R. W. Newson, J.-M. Ménard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8(6), 1586–1589 (2008). [PubMed]
  10. N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21(3), 622–631 (2004).
  11. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73(4), 1715–1719 (2002).
  12. http://www.optigraph.fta-berlin.de/
  13. H. Legall, H. Stiel, A. Antonov, I. Grigorieva, V. Arkadiev, and A. Bjeoumikhov, “A new generation of X-ray optics based on pyrolytic graphite,” in Proceedings of 28th International Free Electron Laser conference, (BESSY, Berlin, Germany, 2006) pp. 798–801.
  14. N. C. J. van der Valk, P. C. M. Planken, A. N. Buijserd, and H. J. Bakker, “Influence of pump wavelength and crystal length on the phase matching of optical rectification,” J. Opt. Soc. Am. B 22(8), 1714–1718 (2005).
  15. X.-C. Zhang, Y. Jin, L. E. Kingsley, and M. Weiner, “Influence of electric and magnetic fields on THz radiation,” Appl. Phys. Lett. 62(20), 2477–2479 (1993).
  16. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84(1), 654–656 (1998).
  17. J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and T. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26(11), 849–851 (2001).
  18. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Theory of magnetic-field enhancement of surface-field terahertz emission,” J. Appl. Phys. 91, 2104–2106 (2002).
  19. A. D. Modestov, J. Gun, and O. Lev, “Graphite photochemistry 2. Photochemical studies of highly oriented pyrolitic graphite,” J. Electroanal. Chem. 476(2), 118–131 (1999).
  20. J.-P. Randin and E. Yeager, “Differential capacitance studies on the basal plane of stress-annealed pyrolytic graphite,” J. Electroanal. Chem. 36(2), 257–276 (1972).
  21. H. Dember, “Photoelectromotive force in cuprous oxide crystals,” Phys. Z. 32, 554–556 (1931).
  22. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
  23. S. R. Snyder, T. Foecke, H. S. White, and W. W. Gerberich, “Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy,” J. Mater. Res. 7(2), 341–344 (1992).
  24. Y. Lu, M. Muñoz, C. S. Steplecaru, C. Hao, M. Bai, N. Garcia, K. Schindler, and P. Esquinazi, “Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors,” Phys. Rev. Lett. 97(7), 076805 (2006). [PubMed]
  25. S. Banerjee, M. Sardar, N. Gayathri, A. K. Thyagi, and B. Raj, “Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges,” Phys. Rev. B 72(7), 075418 (2005).
  26. G. D. Metcalfe, H. Shen, M. Wraback, A. Hirai, F. Wu, and J. S. Speck, “Enhanced terahertz radiation from high stacking fault density nonpolar GaN,” Appl. Phys. Lett. 92(24), 241106 (2008).
  27. E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited