OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16306–16321

Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis

Boris T. Kuhlmey, Stéphane Coen, and Sahand Mahmoodian  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16306-16321 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate theoretically the performance of photonic crystal fibres with coated holes as refractive index sensors. We show that coating the holes with a high-index material allows to extend the extreme sensitivities analyte-waveguide based geometries offer to the case of low-index analytes, including water-based solutions. As the sensitivity of these sensors is intricately linked to the sensitivity of the cutoff of a single inclusion to the analyte refractive index, our approach relies on the derivation of cutoff equations for coated inclusions. This is performed analytically without approximations, in the fully vectorial case, for modes of all orders. Our analytic approach allows us to rapidly cover the parameter space, and to quickly identify promising geometries. The best results are obtained when considering fluorinated polymer fibres, for which the index of the background material is not too different to that of water, and with thin high-index coatings. Using these results, we propose a sensor based on a directional coupler geometry that would lead to a sensitivity of 2.2×104 nm=RIU for water based solutions with achievable smallest detectable refractive index changes below 10-6.

© 2009 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: June 10, 2009
Revised Manuscript: August 18, 2009
Manuscript Accepted: August 23, 2009
Published: August 28, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Boris T. Kuhlmey, Stéphane Coen, and Sahand Mahmoodian, "Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis," Opt. Express 17, 16306-16321 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001). [CrossRef]
  2. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108/1-7 (2008). [CrossRef]
  3. S. Afshar, S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibres," Opt. Express 15, 17,891-17,901 (2007).
  4. A. Amezcua-Correa, A. C. Peacock, C. E. Finlayson, J. J. Baumberg, J. Yang, S. M. Howdle, and P. J. A. Sazio, "Surface enhanced Raman scattering using metal modified microstructured optical fibre substrates," in 32nd European Conference on Optical Communication, p. Tu4.3.4 (Cannes, France, 2006). [CrossRef]
  5. D. Pristinski and H. Du, "Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference," Opt. Lett. 31, 3246-3248 (2006). [CrossRef] [PubMed]
  6. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006). [CrossRef] [PubMed]
  7. L. Rindorf and O. Bang, "Highly sensitive refractometer with a photonic-crystal-fiber long-period grating," Opt. Lett. 33, 563-565 (2008). [CrossRef] [PubMed]
  8. L. Rindorf and O. Bang, "Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing," J. Opt. Soc. Am. B 25, 310-324 (2008). [CrossRef]
  9. D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, "Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules," Appl. Phys. Lett. 93, 081106/1-3 (2008). [CrossRef]
  10. A. Hassani and M. Skorobogatiy, "Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics," Opt. Express 14, 11,616-11,621 (2006). [CrossRef]
  11. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based surface plasmon resonance sensors," Opt. Express 15, 11,413-11,426 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-18-11413. [CrossRef]
  12. N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005). [CrossRef]
  13. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S.-T. Wu, "Avoided-crossing-based liquid-crystal photonic-bandgap notch filter," Opt. Lett. 33, 986-988 (2008). [CrossRef] [PubMed]
  14. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett. 34, 322-324 (2009). [CrossRef] [PubMed]
  15. P. Steinvurzel, E. D. Moore, E. C. M¨agi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006). [CrossRef] [PubMed]
  16. J. M. L’azaro, B. T. Kuhlmey, J. C. Knight, J. M. Lopez-Higuera, and B. J. Eggleton, "Ultrasensitive UV-tunable grating in all-solid photonic bandgap fibers," Opt. Commun. 282, 2358-2361 (2009). [CrossRef]
  17. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, "Fluid-filled solid-core photonic bandgap fibers," J. Lightwave Technol. 27, 1617-1630 (2009). [CrossRef]
  18. V. Galiatsatos, R. O. Neaffer, S. Sen, and B. J. Sherman, Physical Properties of Polymers Handbook, Chapter 39: Refractive index, stress-optical coefficient, and optical configuration parameter of polymers, pp. 535-543 (AIP Press, New York, 1996).
  19. B. T. Kuhlmey, F. Luan, J. M. Lazaro, L. Fu, B. J. Eggleton, D. Yeom, S. Coen, A. Wang, J. C. Knight, C. M. B. Cordeiro, and C. J. S. de Matos, "Applications of long period gratings in solid core photonic bandgap fibers," AIP Conference Proceedings 1055, 61-64 (2008). URL http://link.aip.org/link/?APC/1055/61/1. [CrossRef]
  20. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10,851-10,864 (2006). [CrossRef]
  21. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006). [CrossRef] [PubMed]
  22. C. Jing, Xiujian, Zhao, J. Han, K. Zhu, A. Liu, and H. Tao, "A new method of fabricating internally sol-gel coated capillary tubes," Surf. Coat. Technol. 162, 228-233 (2003). URL http://www.sciencedirect.com/science/article/B6TVV-472BJXN-6/2/ee5f0e6b9e51b138e7fa5c8fb81d42a4. [CrossRef]
  23. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-2-1020. [CrossRef] [PubMed]
  24. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  25. J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A— Pure Appl. Opt. 6, 798-804 (2004). [CrossRef]
  26. A. Snyder and J. Love, Optical waveguide theory (Chapman & Hall, London, 1996).
  27. A. C. Boucouvalas and C. D. Papageorgiou, "Cutoff frequencies in optical fibers of arbitrary refractive-index profile using the resonance technique," IEEE J. Quantum Elec. 18, 2027-2031 (1982). [CrossRef]
  28. W. Gambling, D. Payne, and H. Matsumura, "Cut-off frequency in radially inhomogeneous single-mode fibre," Elec. Lett. 13, 139-140 (1977). URL http://link.aip.org/link/?ELL/13/139/1. [CrossRef]
  29. E. Sharma, I. Goyal, and A. Ghatak, "Calculation of cutoff frequencies in optical fibers for arbitrary profiles using the matrix method," IEEE J. Quantum Elec. 17, 2317-2321 (1981). [CrossRef]
  30. A. C. Boucouvalas, "Mode-cutoff frequencies of coaxial optical couplers," Opt. Lett. 10, 95-97 (1985). [CrossRef] [PubMed]
  31. E. Karadeniz and P. Kornreich, "Optical fibers with high-index-contrast dielectric thin films," Opt. Eng. 45, 105,006 (2006). [CrossRef]
  32. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, 9th ed. (Dover Publications, Inc., New York, 1965).
  33. T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  34. Wolfram Research, Inc., "Mathematica version 6," (2007).
  35. G. W. Milton, The Theory of Composites (Cambridge University Press, 2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited