OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16342–16351

Arbitrary waveform synthesis by multiple harmonics generation and phasing in aperiodic optical superlattices

Wei-Hsun Lin and A. H. Kung  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 16342-16351 (2009)
http://dx.doi.org/10.1364/OE.17.016342


View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The process of generating periodic optical waveforms includes the generation and phasing of several harmonics of a fundamental frequency. In this work, we show that simultaneous generation and phasing of the harmonics can be performed in a monolithic aperiodic optical superlattice (AOS). Stable periodic waveforms can thus be delivered to a predetermined location by simply sending a laser beam through a properly designed and fabricated AOS crystal. A detailed mathematical description for generating the domain pattern in such an AOS crystal is given and the process is numerically demonstrated. The waveform that is generated from a monolithic AOS is highly reproducible and phase stable. We also use propagation in air as an example to show how any predictable phase and amplitude modifications such as air dispersion that will alter the desired waveform can be pre-compensated in the design phase of the AOS crystal.

© 2009 OSA

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(320.5540) Ultrafast optics : Pulse shaping
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: June 19, 2009
Revised Manuscript: July 28, 2009
Manuscript Accepted: July 28, 2009
Published: August 28, 2009

Citation
Wei-Hsun Lin and A. H. Kung, "Arbitrary waveform synthesis by multiple harmonics generation and phasing in aperiodic optical superlattices," Opt. Express 17, 16342-16351 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Four-User, 2.5-Gb/s, Spectrally Coded OCDMA System Demonstration Using Low-Power Nonlinear Processing,” J. Lightwave Technol. 23(1), 143–158 (2005). [CrossRef]
  2. M. C. Stowe, F. C. Cruz, A. Marian, and J. Ye, “High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb,” Phys. Rev. Lett. 96(15), 153001 (2006). [CrossRef] [PubMed]
  3. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421(6923), 611–615 (2003). [CrossRef] [PubMed]
  4. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5(8), 1563–1572 (1988). [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef]
  6. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993). [CrossRef] [PubMed]
  7. S. E. Harris and A. V. Sokolov, “Subfemtosecond Pulse Generation by Molecular Modulation,” Phys. Rev. Lett. 81(14), 2894–2897 (1998). [CrossRef]
  8. T. W. Hänsch, “A proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators,” Opt. Commun. 80(1), 71–75 (1990). [CrossRef]
  9. I. V. Shutov and A. S. Chirkin, “Consecutive high-order harmonic generation and formation of subfemtosecond light pulses in aperiodical nonlinear photonic crystals,” Phys. Rev. A 78(1), 013827 (2008). [CrossRef]
  10. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94(3), 033904 (2005). [CrossRef] [PubMed]
  11. W. J. Chen, Z. M. Hsieh, S. W. Huang, H. Y. Su, C. J. Lai, T. T. Tang, C. H. Lin, C. K. Lee, R. P. Pan, C. L. Pan, and A. H. Kung, “Sub-single-cycle optical pulse train with constant carrier envelope phase,” Phys. Rev. Lett. 100(16), 163906 (2008). [CrossRef] [PubMed]
  12. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]
  13. N. Bloembergen, Nonlinear Optics (World Scientific, 1996).
  14. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi–Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]
  15. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical Properties of Lithium-Rich Lithium Niobate Fabricated by Vapor Transport Equilibration,” IEEE J. Quantum Electron. 26(1), 135–138 (1990). [CrossRef]
  16. E. Peck and K. Reeder, “Dispersion of Air,” J. Opt. Soc. Am. 62(8), 958–962 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited