OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16358–16365

Enhanced direct bandgap emission in germanium by micromechanical strain engineering

Peng Huei Lim, Sungbong Park, Yasuhiko Ishikawa, and Kazumi Wada  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 16358-16365 (2009)
http://dx.doi.org/10.1364/OE.17.016358


View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new class of optoelectronic devices in which the optical properties of the active material is enhanced by strain generated from micromechanical structures. As a concrete example, we modeled the emission efficiency of strained germanium supported by a cantilever-like platform. Our simulations indicate that net optical gain is obtainable even in indirect germanium under a substrate biaxial tensile strain of about 1.5% with an electron-hole injection concentration of 9×1018 cm-3 while direct bandgap germanium becomes available at a strain of 2%. A large wavelength tuning span of 400 nm in the mid-IR range also opens up the possibility of a tunable on-chip germanium biomedical light source.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 6, 2009
Revised Manuscript: August 4, 2009
Manuscript Accepted: August 5, 2009
Published: August 31, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Peng Huei Lim, Sungbong Park, Yasuhiko Ishikawa, and Kazumi Wada, "Enhanced direct bandgap emission in germanium by micromechanical strain engineering," Opt. Express 17, 16358-16365 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16358


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Menéndez, and J. Kouvetakis, "Type-I Ge/Ge1-x-ySixSny strained-layer heterostructures with a direct Ge bandgap," Appl. Phys. Lett. 85(7), 1175-1177 (2004). [CrossRef]
  2. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, "Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si," Opt. Express 15(18), 11272-11277 (2007). [CrossRef]
  3. M. El Kurdi, S. David, X. Checoury, G. Fishman, P. Boucaud, O. Kermarrec, D. Bensahel, and B. Ghyselen, "Two-dimensional photonic crystals with pure germanium-on-insulator," Opt. Commun. 281(4), 846-850 (2008). [CrossRef]
  4. P. H. Lim, Y. Kobayashi, S. Takita, Y. Ishikawa, and K. Wada, "Enhanced photoluminescence from germanium-based ring resonators," Appl. Phys. Lett. 93(4), 041103 (2008). [CrossRef]
  5. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, "Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes," Opt. Lett. 34(8), 1198-1200 (2009). [CrossRef]
  6. M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Debarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec and D. Bensahel, "Enhanced photoluminescence of heavy n-doped germanium," Appl. Phys. Lett. 94, 191107 (2009). [CrossRef]
  7. K. Wada, J.-F. Liu, J. Jongthammamurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H.-C. Luan, Y. Ishikawa, X. Duan, M. Michel, H. A. Haus, and L. C. Kimerling, "Si Microphotonics for Optical Interconnection" in Optical interconnects-the silicon approach, Pavesi and Guillot ed., (Springer, Berlin, 2006), p. 291-310.
  8. Landolt-Börnstein, Group IV Physical Chemistry, Numerical Data and Functional Relationships in Science and Technology, O. Madelung ed. (Springer, Berlin, 1996), volume 5f, book Ga-Gd-Hf-Zn.
  9. S. Johansson, J.-A. Schweitz, L. Tenerz, and J. Tiren, "Fracture testing of silicon microelements in situ in a scanning electron microscope," J. Appl. Phys. 63(10), 4799-4803 (1988). [CrossRef]
  10. B. M. Haugerud, L. A. Bosworth, and R. E. Belford, "Mechanically induced strain enhancement of metal-oxide-semiconductor field effect transistors," J. Appl. Phys. 94(6), 4102-4107 (2003). [CrossRef]
  11. S. Jongthammanurak, J. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimerling, and J. Michel, "Large electro-optic effect in tensile strained Ge-on-Si films," Appl. Phys. Lett. 89(16), 161115 (2006). [CrossRef]
  12. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441(7090), 199-202 (2006). [CrossRef]
  13. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82(13), 2044-2046 (2003). [CrossRef]
  14. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, "High-quality Ge epilayers on Si with low threading-dislocation densities," Appl. Phys. Lett. 75(19), 2909-2911 (1999). [CrossRef]
  15. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, "Silicidation-induced band gap shrinkage in Ge epitaxial films on Si," Appl. Phys. Lett. 84(5), 660-662 (2004). [CrossRef]
  16. P. M. Mooney, G. M. Cohen, J. O. Chu, and C. E. Murray, "Elastic strain relaxation in free-standing SiGe/Si structures," Appl. Phys. Lett. 84(7), 1093-1095 (2004). [CrossRef]
  17. A. L. Ruoff, "On the ultimate yield strength of solids," J. Appl. Phys. 49(1), 197-200 (1978). [CrossRef]
  18. D. Roundy, and M. L. Cohen, "Ideal strength of diamond, Si, and Ge," Phys. Rev. B 64(21), 212103 (2001). [CrossRef]
  19. T. Namazu, Y. Isono, and T. Tanaka, "Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM," J. Micromech. Sys. 9(4), 450-459 (2000). [CrossRef]
  20. T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, "Methyl monolayers improve the fracture strength and durability of silicon nanobeams," Appl. Phys. Lett. 89(23), 231905 (2006). [CrossRef]
  21. K.-S. Chen, A. Ayon, and S. M. Spearing, "Controlling and Testing the Fracture Strength of Silicon on the Mesoscale," J. Am. Ceram. Soc. 83(6), 1476-1484 (2000). [CrossRef]
  22. D. C. Houghton, G. C. Aers, S. Yang, E. Wang, and N. L. Rowell, "Type I band alignment in Si1-xGex/Si(001) quantum wells: photoluminescence under applied [110] and [100] Uniaxial Stress," Phys. Rev. Lett. 75(5), 866-869 (1995). [CrossRef]
  23. P. G. Evans, D. S. Tinberg, M. M. Roberts, M. G. Lagally, Y. Xiao, B. Lai, and Z. Cai, "Germanium hut nanostressors on freestanding thin silicon membranes," Appl. Phys. Lett. 87(7), 073112 (2005). [CrossRef]
  24. A. E. Franke, and M. J. Heck, T.-J. King, R. T. Howe, "Polycrystalline silicon-germanium films for integrated microsystems," J. Micromech. Sys. 12(2), 160-171 (2003). [CrossRef]
  25. A. E. Franke, D. Bilic, D. T. Chang, P. T. Jones, T.-J. King, R. T. Howe, and G. C. Johnson, "Post-CMOS integration of germanium microstructures," MEMS '99. Twelfth IEEE International Conference on, 630-637 (1999).
  26. P. T. Jones, G. C. Johnson, and R. T. Howe, "The fracture strength of polycrystalline silicon," Proceedings of MRS 1998 Spring Meeting, April 13-17, San Francisco, 197-202 (1998).
  27. N. Lobontiu and E. Garcia, Mechanics of Microelectromechanical Systems, (Kluwer Academic Publishers, 2005).
  28. F. Zhang, V. H. Crespi, and P. Zhang, "Prediction that uniaxial tension along <111> produces a direct band gap in germanium," Phys. Rev. Lett. 102(15), 156401 (2009). [CrossRef]
  29. S. Dhar, "Analytical Mobility Modeling for Strained Silicon-Based Devices," Dissertation, Vienna University of Technology (2007).
  30. O. Madelung ed., Semiconductors - Basic Data, (Springer, Berlin, 1996).
  31. C. G. Van de Walle, "Band lineups and deformation potentials in the model-solid theory," Phys. Rev. B 39(3), 1871-1883 (1989). [CrossRef]
  32. S. L. Chuang, Physics of Optoelectronic Devices, (John Wiley & Sons, New York, 1995).
  33. T. C. Chong, and C. G. Fonstad, "Theoretical Gain of Strained-Layer Semiconductor Lasers in the Large Strain Regime," IEEE J. Quantum Electron. 25(2), 171-178 (1989). [CrossRef]
  34. M. M. Rieger, and P. Vogl, "Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates," Phys. Rev. B 48(19), 14276-14287 (1993). [CrossRef]
  35. F. Schaeffler, "High-mobility Si and Ge structures," Semicond. Sci. Technol. 12(12), 1515-1549 (1997). [CrossRef]
  36. D. J. Paul, "Si/SiGe heterostructures: from material and physics to devices and circuits," Semicond. Sci. Technol. 19(10), R75-R108 (2004). [CrossRef]
  37. J. Liu, Massachusetts Institute of Technology, Cambridge, MA 02139 (personal communication, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited