OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16366–16371

Near vacuum ultraviolet luminescence of Gd3+ and Er3+ ions generated by super saturation upconversion processes

Guanying Chen, Huijuan Liang, Haichun Liu, Gabriel Somesfalean, and Zhiguo Zhang  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16366-16371 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near vacuum ultraviolet (UV) upconversion (UC) emissions with a spectral resolution of 1 nm, from the 6GJ, 6DJ, 6IJ, 6PJ levels of Gd3+ and the 2L17/2, 4D7/2, 2H(2)9/2, 2D5/2, 4G7/2, 2K13/2, 2P3/2 levels of Er3+, were observed under 974 nm laser excitation. Mechanism analyses illustrate that successive energy transfers (ETs) from Yb3+ to Er3+ generate UV UC radiations in Er3+, while two resonant ETs from Er3+ to Gd3+ lead to UV UC radiations in Gd3+. Power dependence analyses indicate that the expected inefficient four- and five-photon processes have been switched into efficient two-photon processes due to a super saturation UC phenomenon that employs consecutive saturations at the intermediate states.

© 2009 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Nonlinear Optics

Original Manuscript: February 18, 2009
Revised Manuscript: July 23, 2009
Manuscript Accepted: August 14, 2009
Published: August 31, 2009

Guanying Chen, Huijuan Liang, Haichun Liu, Gabriel Somesfalean, and Zhiguo Zhang, "Near vacuum ultraviolet luminescence of Gd3+ and Er3+ ions generated by super saturation upconversion processes," Opt. Express 17, 16366-16371 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004). [CrossRef] [PubMed]
  2. D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007). [CrossRef]
  3. L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007). [CrossRef]
  4. J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005). [CrossRef]
  5. E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006). [CrossRef]
  6. F. Vetrone, J. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004). [CrossRef]
  7. E. de la Rosa, D. Solis, L. A. Díaz-Torres, P. Salas, C. Angeles-Chavez, and O. Meza, “Blue-green upconversion emission in ZrO2:Yb3+ nanocrystals,” J. Appl. Phys. 104(10), 103508 (2008). [CrossRef]
  8. L. de S. Menezes and C. B. de Araújo,G. S Maciel, Y. Messaddeq, and M. A. Aegerter, “Continuous wave ultraviolet frequency upconversion due to triads of Nd3+ ions in fluoroindate glass,” Appl. Phys. Lett. 70, 683–685 (1997). [CrossRef]
  9. F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, “A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals,” J. Phys. Chem. B 109(37), 17400–17405 (2005). [CrossRef]
  10. C. Y. Cao, W. P. Qin, J. S. Zhang, Y. Wang, P. F. Zhu, G. D. Wei, G. F. Wang, R. Kim, and L. L. Wang, “Ultraviolet upconversion emissions of Gd3+.,” Opt. Lett. 33(8), 857–859 (2008). [CrossRef] [PubMed]
  11. X. B. Chen and Z. F. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24(4), 965–971 (2007). [CrossRef]
  12. G. Y. Chen, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y2O3 induced by infrared diode laser excitation,” Opt. Lett. 32(1), 87–89 (2007). [CrossRef]
  13. M. Pollau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000). [CrossRef]
  14. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005). [CrossRef]
  15. M. J. Weber, “Radiative and multiphonon relaxation of rare-earth ions in Y2O3,” Phys. Rev. 171(2), 283–291 (1968). [CrossRef]
  16. A. Aebischer, S. Heer, D. Biner, K. Krämer, M. Haase, and H. U. Güdel, “Visible light emission upon near-infrared excitation in a transparent solution of nanocrystalline β-NaGdF4:Yb3+,Er3+,” Chem. Phys. Lett. 407(1-3), 124–128 (2005). [CrossRef]
  17. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic Energy levels of the trivalent lanthanide aquo ions. II. Gd3+,” J. Chem. Phys. 49(10), 4443–4446 (1968). [CrossRef]
  18. H. Kondo, T. Hirai, and S. Hashimoto, “Energy migration and relaxation through Gd3+ sublattice in NaGdF4,” J. Lumin. 102–103, 727–732 (2003). [CrossRef]
  19. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide quo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424 (1968). [CrossRef]
  20. J. F. Suyer, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/ or Yb3+,” J. Lumin. 117(1), 1–12 (2006). [CrossRef]
  21. G. S. Yi, H. C. Lu, S. Y. Zhao, Y. Ge, W. J. Yang, D. P. Chen, and L. H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible upconversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004). [CrossRef]
  22. G. Y. Chen, H. C. Liu, H. J. Liang, G. Somesfalean, and Z. G. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008). [CrossRef]
  23. E. van der Kolk, P. Dorenbos, K. Krämer, D. Biner, and H. U. Güdel, “High-resolution luminescence spectroscopy study of down-conversion routes in NaGdF4:Nd3+ and NaGdF4:Tm3+ using synchrotron radiation,” Phys. Rev. B 77(12), 125110 (2008). [CrossRef]
  24. H. L. Xu and Z. K. Jiang, “Ultraviolet and violet upconversion luminescence in Er3+-doped yttrium aluminum garnet crystals,” Phys. Rev. B 66(3), 035103 (2002). [CrossRef]
  25. G. S. Qin, W. P. Qin, S. H. Huang, C. F. Wu, D. Zhao, B. J. Chen, S. Z. Lu, and E. Shulin, “Infrared-to-violet upconversion from Yb3+ and Er3+ codoped amorphous fluoride film prepared by pulsed laser deposition,” J. Appl. Phys. 92(11), 6936–6938 (2002). [CrossRef]
  26. G. Y. Chen, Y. Liu, Z. G. Zhang, B. Aghahadi, G. Somesfalean, Q. Sun, and F. P. Wang, “Four-photon upconversion induced by infrared diode laser exciation in rare-earth-ion-doped Y2O3 nanocrystals,” Chem. Phys. Lett. 448(1-3), 127–131 (2007). [CrossRef]
  27. G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, and F. P. Wang, “Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals,” Phys. Rev. B 75(19), 195204 (2007). [CrossRef]
  28. R. H. Page, K. I. Schaffers, P. A. Waide, J. B. Tassano, S. A. Payne, W. F. Krupke, and W. K. Bischel, “Upconversion-pulmped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium,” J. Opt. Soc. Am. B 15(3), 996–1008 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited