OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16450–16455

Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies

Li Li, Konstantin Maslov, Geng Ku, and Lihong V. Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 16450-16455 (2009)
http://dx.doi.org/10.1364/OE.17.016450


View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoacoustic microscopy is predominantly sensitive to optical absorption, while optical coherence tomography relies on optical backscattering. Integrating their complementary contrasts can provide comprehensive information about biological tissue. We have developed a dual-modality microscope that combines the two for studying microcirculation. Three-dimensional imaging of microvasculature and its local environment has been demonstrated at micrometer-order resolution using endogenous contrast in vivo.

© 2009 OSA

OCIS Codes
(170.1870) Medical optics and biotechnology : Dermatology
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 2, 2009
Revised Manuscript: August 11, 2009
Manuscript Accepted: August 13, 2009
Published: August 31, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Li Li, Konstantin Maslov, Geng Ku, and Lihong V. Wang, "Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies," Opt. Express 17, 16450-16455 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16450


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006). [CrossRef] [PubMed]
  2. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008). [CrossRef] [PubMed]
  3. G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-µm transverse resolution,” J. Biomed. Opt. under review. [PubMed]
  4. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008). [CrossRef]
  5. J. Oh, M. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 034032 (2006). [CrossRef]
  6. C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006). [CrossRef]
  7. H. T. Chen, H. F. Wang, M. N. Slipchenko, Y. K. Jung, Y. Z. Shi, J. B. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-3-1282 . [CrossRef] [PubMed]
  8. S. Y. Emelianov, S. R. Aglyamov, A. B. Karpiouk, S. Mallidi, S. Park, S. Sethuraman, J. Shah, R. W. Smalling, J. M. Rubin, and W. G. Scott, “Synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging,” 2006 IEEE Ultrasonics Symposium, 405–415 (2006).
  9. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005). [CrossRef] [PubMed]
  10. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 . [CrossRef] [PubMed]
  11. B. Fagrell and M. Intaglietta, “Microcirculation: its significance in clinical and molecular medicine,” J. Intern. Med. 241(5), 349–362 (1997). [CrossRef] [PubMed]
  12. R. K. Jain, L. L. Munn, and D. Fukumura, “Dissecting tumour pathophysiology using intravital microscopy,” Nat. Rev. Cancer 2(4), 266–276 (2002). [CrossRef] [PubMed]
  13. R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [CrossRef] [PubMed]
  14. J. Seylaz, R. Charbonné, K. Nanri, D. Von Euw, J. Borredon, K. Kacem, P. Méric, and E. Pinard, “Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy,” J. Cereb. Blood Flow Metab. 19(8), 863–870 (1999). [CrossRef] [PubMed]
  15. E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001). [CrossRef] [PubMed]
  16. E. Eriksson, J. V. Boykin, and R. N. Pittman, “Method for in vivo microscopy of the cutaneous microcirculation of the hairless mouse ear,” Microvasc. Res. 19(3), 374–379 (1980). [CrossRef] [PubMed]
  17. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protocols 2(4), 797–804 (2007). [CrossRef]
  18. J. Ai and L. V. Wang, “Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography,” Opt. Lett. 30(21), 2939–2941 (2005). [CrossRef] [PubMed]
  19. European mutant mouse pathology database (Pathbase), “Scanning electron microscopy of the mouse ear,” (University of Cambridge, 08/2009). http://eulep.pdn.cam.ac.uk/~skinbase/Anatomic_hair_types/EAR_
ANNOTAT ED.jpg
  20. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007). [CrossRef]
  21. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000). [CrossRef]
  22. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35(12), 5758–5767 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited