OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16505–16517

Surface plasmon resonance (SPR) sensors: approaching their limits?

Marek Piliarik and Jiří Homola  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 16505-16517 (2009)
http://dx.doi.org/10.1364/OE.17.016505


View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a unified theoretical model of the resolution of SPR sensors which makes it possible to predict the ultimate performance of all major configurations of SPR sensors. The theory indicates that the performance of SPR sensors is independent of the method of excitation of surface plasmons (prism or grating coupling) or the method of modulation (amplitude, angular or wavelength) and depends dominantly on the noise properties of the light source and detector. Results of the theoretical analysis are compared with the performance reported for several SPR sensors to illustrate that the best state-of-art SPR sensors are approaching their theoretical limits. Possibilities for further advances in the performance of SPR sensor technology are discussed.

© 2009 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: July 21, 2009
Manuscript Accepted: August 28, 2009
Published: September 1, 2009

Citation
Marek Piliarik and Jiří Homola, "Surface plasmon resonance (SPR) sensors: approaching their limits?," Opt. Express 17, 16505-16517 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, Berlin-Heidelberg-New York, 2006).
  2. G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13(12), 2038–2046 (2002). [CrossRef]
  3. R. Karlsson and A. Fält, “Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors,” J. Immunol. Methods 200(1-2), 121–133 (1997). [CrossRef] [PubMed]
  4. J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, “Optimal self-referenced sensing using long- and short- range surface plasmons,” Opt. Express 15(26), 17661–17672 (2007). [CrossRef] [PubMed]
  5. J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008). [CrossRef]
  6. E. K. Popov, N. Bonod, and S. Enoch, “Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings,” Opt. Express 15(7), 4224–4237 (2007). [CrossRef] [PubMed]
  7. C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N. A. P. Nicorovici, and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Opt. Express 15(13), 8163–8169 (2007). [CrossRef] [PubMed]
  8. T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron. 22(9-10), 2208–2215 (2007). [CrossRef]
  9. M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24(5), 1399–1404 (2009). [CrossRef]
  10. S. Patskovsky, M. Vallieres, M. Maisonneuve, I. H. Song, M. Meunier, and A. V. Kabashin, “Designing efficient zero calibration point for phase-sensitive surface plasmon resonance biosensing,” Opt. Express 17(4), 2255–2263 (2009). [CrossRef] [PubMed]
  11. C. M. Wu and M. C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12(15), 3509–3514 (2004). [CrossRef] [PubMed]
  12. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  13. H. Raether, “Surface-Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).
  14. M. Servin, J. C. Estrada, J. A. Quiroga, J. F. Mosiño, and M. Cywiak, “Noise in phase shifting interferometry,” Opt. Express 17(11), 8789–8794 (2009). [CrossRef] [PubMed]
  15. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006). [CrossRef] [PubMed]
  16. K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000). [CrossRef]
  17. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996). [CrossRef]
  18. K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000). [CrossRef]
  19. K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274(1), 7–17 (1999). [CrossRef] [PubMed]
  20. T. M. Chinowsky, L. S. Jung, and S. S. Yee, “Optimal linear data analysis for surface plasmon resonance biosensors,” Sens. Actuators B Chem. 54(1-2), 89–97 (1999). [CrossRef]
  21. P. Tobiška and J. Homola, “Advanced data processing for SPR biosensors,” Sens. Actuators B Chem. 107(1), 162–169 (2005). [CrossRef]
  22. M. Piliarik, H. Vaisocherová, and J. Homola, “A new surface plasmon resonance sensor for high-throughput screening applications,” Biosens. Bioelectron. 20(10), 2104–2110 (2005). [CrossRef] [PubMed]
  23. M. Piliarik, H. Vaisocherova, and J. Homola, “Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides,” Sens. Actuators B Chem. 121(1), 187–193 (2007). [CrossRef]
  24. I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B Chem. 54(1-2), 98–105 (1999). [CrossRef]
  25. F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009). [CrossRef]
  26. C. Thirstrup and W. Zong, “Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm,” Sens. Actuators B Chem. 106(2), 796–802 (2005). [CrossRef]
  27. T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators B Chem. 91(1-3), 266–274 (2003). [CrossRef]
  28. M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009). [CrossRef]
  29. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007). [CrossRef]
  30. M. Vala, S. Etheridge, J. A. Roach, and J. Homola, “Long-range surface plasmons for sensitive detection of bacterial analytes,” Sens. Actuators B Chem. 139(1), 59–63 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited