OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16518–16526

Micro/nano scale amorphization of silicon by femtosecond laser irradiation

Amirkianoosh Kiani, Krishnan Venkatakrishnan, and Bo Tan  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16518-16526 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This research aimed to investigate the feasibility of using direct amorphization of silicon induced by femtosecond laser irradiation for maskless lithography. A thin layer of amorphous silicon of predetermined pattern was first generated by irradiation by a femtosecond laser of Mega Hertz pulse frequency. The following KOH etching revealed that the amorphous silicon layer acted as an etch stop. Line width less than 1/67 the focused spot size was demonstrated and hence the proposed maskless lithography process has the potential of producing submicron and nanoscale features by employing a laser beam of shorter wavelength and a high NA focusing lens. Scanning Electron Microscope (SEM), a Micro-Raman and Energy Dispersive X-ray (EDX) spectroscopy analyses were used to evaluate the quality of amorphous layer and the etching process.

© 2009 OSA

OCIS Codes
(110.5220) Imaging systems : Photolithography
(140.3390) Lasers and laser optics : Laser materials processing
(140.6810) Lasers and laser optics : Thermal effects
(160.6000) Materials : Semiconductor materials
(320.7090) Ultrafast optics : Ultrafast lasers
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 22, 2009
Revised Manuscript: August 10, 2009
Manuscript Accepted: August 12, 2009
Published: September 1, 2009

Amirkianoosh Kiani, Krishnan Venkatakrishnan, and Bo Tan, "Micro/nano scale amorphization of silicon by femtosecond laser irradiation," Opt. Express 17, 16518-16526 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bauerle, Laser processing and chemistry, (Springer, New York, 3rd ed., 2000).
  2. D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003). [CrossRef]
  3. B. Tan, A. Dalili, and K. Venkatakrishnan, ““High Repetition Rate Femtosecond Laser Nano-machining of Thin Films,” J,” Appl. Phys., A Mater. Sci. Process. 95(2), 537–545 (2009). [CrossRef]
  4. P. Stanley, K. Venkatakrishnan, and L. E. N. Lim, “Direct writing of photomask by ultrashort laser,” J. Vac. Sci. Technol. B 21(1), 204–206 (2003). [CrossRef]
  5. K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002). [CrossRef]
  6. H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996). [CrossRef]
  7. B. Schmidt, L. Bischoff, and J. Teichert, “Writing FIB implantation and subsequent anisotropic wet chemical etching for fabrication of 3D structures in silicon,” Sens. Actuators A Phys. 61(1-3), 369–373 (1997). [CrossRef]
  8. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, C. J. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunnelling microscope operating air,” Appl. Phys. Lett. 56(20), 2001–2003 (1990). [CrossRef]
  9. S. C. Minne, H. T. Soh, P. Flueckinger, and C. F. Quate, “Fabrication of 0.1-MU-M Metal-Oxide-Semiconductor Field-Effect Transistors with the atomic-force microscope,” Appl. Phys. Lett. 66(6), 703–705 (1995). [CrossRef]
  10. P. M. Chapbell, E. S. Snow, and P. J. McMarr, “Fabrication of nanometer-scale side-gated silicon field-effect transistors with an atomic-force microwave,” Appl. Phys. Lett. 66(11), 1388–1390 (1995). [CrossRef]
  11. F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999). [CrossRef]
  12. Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005). [CrossRef]
  13. K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” Surf. Sci. 514(1-3), 27–32 (2002). [CrossRef]
  14. F. S. S. Chien, J. W. Chang, S. W. Lin, Y. C. Chou, T. T. Chan, S. Gwo, T. S. Chao, and W. F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000). [CrossRef]
  15. D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000). [CrossRef]
  16. H. T. Lee, J. S. Oh, K. H. Park, J. S. Ha, H. J. Yoo, and J. Y. Koo, “Nanometer-scale lithography on H-passivated Si(100) by atomic force microscope in air,” J. Vac. Sci. Technol. A 15(3), 1451–1454 (1997). [CrossRef]
  17. N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” NanoBiotechnology 16, 1411–1414 (2005).
  18. J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004). [CrossRef]
  19. J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, ““Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME,” J. Manuf. Sci. Eng. 126(4), 801–806 (2004). [CrossRef]
  20. K. Venkatakrishnan, B. Tan, P. Stanely, L. E. N. Lim, and B. K. A. Ngoi, “Femtosecond pulsed laser direct writing system,” Opt. Eng. 41(6), 1441–1445 (2002). [CrossRef]
  21. J. M. Liu, R. Yen, H. Kurz, and N. Bloembergen, “Phase-Transformation on and charged-partocle emisson from a silicon crystal-surface, induced by picosecond laser-pulses,” Appl. Phys. Lett. 39(9), 755–757 (1981). [CrossRef]
  22. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A Mater. Sci. Process. 74, 19–25 (2002). [CrossRef]
  23. C. C. Bradley, W. R. Anderson, J. J. McClelland, and R. J. Celotta, “Nanofabrication via atom optics,” Appl. Surf. Sci. 141(3-4), 210–218 (1999). [CrossRef]
  24. A. V. Osipov, P. Patzner, and P. Hess, “Kinetics of laser-induced oxidation of silicon near room temperature,” Appl. Phys., A Mater. Sci. Process. 82(2), 275–280 (2006). [CrossRef]
  25. P. Patzner, A. V. Osipov, and P. Hess, “Photoinduced self-limited low-temperature growth of ultra-thin silicon-oxide films with water vapor,” Appl. Phys., A Mater. Sci. Process. 85(2), 145–150 (2006). [CrossRef]
  26. J. Bonse, K. W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited