OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16527–16534

Broadband resonant terahertz transmission in a composite metal-dielectric structure

Jiaguang Han, Jianqiang Gu, Xinchao Lu, Mingxie He, Qirong Xing, and Weili Zhang  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16527-16534 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a systematic numerical study of a metal-dielectric-metal sandwich plasmonic structure for broadband resonant transmission at terahertz frequencies. The proposed structure consists of periodic slotted metallic arrays on both sides of a thin dielectric substrate and is demonstrated to exhibit a broad passband transmission response. Various design considerations have been investigated to exploit their influence on the transmission passband width and the center resonance frequency. The structure ensures a broadband transmission over a wide range of incident angles.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6270) Spectroscopy : Spectroscopy, far infrared
(310.4165) Thin films : Multilayer design

ToC Category:
Optics at Surfaces

Original Manuscript: July 1, 2009
Revised Manuscript: August 24, 2009
Manuscript Accepted: August 31, 2009
Published: September 1, 2009

Jiaguang Han, Jianqiang Gu, Xinchao Lu, Mingxie He, Qirong Xing, and Weili Zhang, "Broadband resonant terahertz transmission in a composite metal-dielectric structure," Opt. Express 17, 16527-16534 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005). [CrossRef]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  5. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006). [CrossRef] [PubMed]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  7. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef]
  8. D. Grischkowsky, S. Keiding, M. V. Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectric and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  9. J. Han, W. Zhang, W. Chen, S. Ray, J. Zhang, M. He, A. Azad, and Z. Zhu, “Terahertz dielectric properties and low-frequency phonon resonances of Zno nanostructures,” J. Phys. Chem. C 111(35), 13000–13006 (2007). [CrossRef]
  10. A. M. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. P. Alves da Silva, “Metal mesh resonant filters for terahertz frequencies,” Appl. Opt. 47(32), 6064–6069 (2008). [CrossRef] [PubMed]
  11. A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006). [CrossRef] [PubMed]
  12. X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008). [CrossRef]
  13. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004). [CrossRef]
  14. J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103(3), 033108 (2008). [CrossRef]
  15. J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009). [CrossRef] [PubMed]
  16. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005). [CrossRef] [PubMed]
  17. A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, S. R. Andrews, and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1515–1521 (2008). [CrossRef]
  18. B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a two-layer array of loaded slots,” IEEE Trans. Antenn. Propag. 22(6), 804–809 (1974). [CrossRef]
  19. B. A. Munk, Frequency selected surfaces: theory and design (John-Wily and Sons, New York, 2000).
  20. L. Shafai, “Wideband Microstrip Antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw-Hill, New York, 2007).
  21. J. Gu, et al., “A close-ring pair metamaterial resonating at terahertz frequencies,” unpublished.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited