OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16535–16542

Optical lens compression via transformation optics

D. A. Roberts, N. Kundtz, and D. R. Smith  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16535-16542 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2962 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transformation optics is widely associated with the design of unconventional electromagnetic devices, such as electromagnetic cloaks or concentrators. However, a wide range of conventional optical devices with potentially advantageous properties can be designed by the transformation optical approach. For example, a coordinate transformation can be introduced that compresses a region of space, resulting in an overall decrease in the thickness of an optical instrument such as a lens. The optical properties of a transformed lens, such as Fresnel reflection or aberration profile, are equivalent to those of the original lens, while the transformed lens and the bounding transformation optical material are thinner than the original lens. This approach to flattening the profile of a lens represents an advantage over the use of a higher dielectric material because it does not introduce greater Fresnel reflections or require a redesign of the basic optic. Though transformation optical media are generally anisotropic, with both electric and magnetic response, it is possible to arrive at a dielectric-only transformation optical distribution for a lens interacting with transverse-magnetic (TM) polarized light. The dielectric-only distribution can be implemented using broad-band, low-loss metamaterials. Lens designs for both a full transformation and a dielectric-only implementation are discussed and confirmed via finite-element simulations.

© 2009 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses
(230.0230) Optical devices : Optical devices
(160.3918) Materials : Metamaterials

ToC Category:
Imaging Systems

Original Manuscript: July 7, 2009
Revised Manuscript: August 15, 2009
Manuscript Accepted: August 17, 2009
Published: September 1, 2009

D. A. Roberts, N. Kundtz, and D. R. Smith, "Optical lens compression via transformation optics," Opt. Express 17, 16535-16542 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  4. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008). [CrossRef] [PubMed]
  5. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008). [CrossRef] [PubMed]
  6. D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008). [CrossRef]
  7. D. H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16(23), 18731–18738 (2008). [CrossRef]
  8. D. Schurig, J. B. Pendry, and D. R. Smith, “Transformation-designed optical elements,” Opt. Express 15(22), 14772–14782 (2007). [CrossRef] [PubMed]
  9. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007). [CrossRef] [PubMed]
  10. M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77(3), 035122 (2008). [CrossRef]
  11. L. Lin, W. Wang, C. L. Du, and X. G. Luo, “A cone-shaped concentrator with varying performances of concentrating,” Opt. Express 16(10), 6809–6814 (2008). [CrossRef] [PubMed]
  12. M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78(12), 125113 (2008). [CrossRef]
  13. V. M. Shalaev, “Physics. Transforming light,” Science 322(5900), 384–386 (2008). [CrossRef] [PubMed]
  14. D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” N. J. Phys. 10(11), 115023 (2008). [CrossRef]
  15. D. Schurig, “An aberration-free lens with zero F-number,” N. J. Phys. 10(11), 115034 (2008). [CrossRef]
  16. F. M. Kong, B. I. I. Wu, J. A. Kong, J. T. Huangfu, S. Xi, and H. S. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007). [CrossRef]
  17. Yu. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the Emission of Electromagnetic Source,” PIERS 4(7), 795–800 (2008). [CrossRef]
  18. N. Kundtz, D. A. Roberts, J. Allen, S. Cummer, and D. R. Smith, “Optical source transformations,” Opt. Express 16(26), 21215–21222 (2008). [CrossRef] [PubMed]
  19. D.-H. Kwon and D. H. Werner, “Restoration of antenna parameters in scattering environments using electromagnetic cloaking,” Appl. Phys. Lett. 92(11), 113507 (2008). [CrossRef]
  20. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005). [CrossRef] [PubMed]
  21. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005). [CrossRef]
  22. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett. 88(8), 081101 (2006). [CrossRef]
  23. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  24. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  25. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232 (2004). [CrossRef]
  26. D. Schurig and D. R. Smith, “Negative index lens aberrations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 065601 (2004). [CrossRef]
  27. A. D. Portnoy, N. P. Pitsianis, X. Sun, and D. J. Brady, “Multichannel sampling schemes for optical imaging systems,” Appl. Opt. 47(10), B76–B85 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited