OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16603–16612

Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks

Dowon Ahn, Yong-Cheol Jeong, Seungwoo Lee, Jihye Lee, Yongjoon Heo, and Jung-Ki Park  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16603-16612 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (708 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new photoalignment method of controlling the pretilt angle of liquid crystals (LCs) by using organic/inorganic hybrid interpenetrating polymer networks (IPNs) is proposed and demonstrated. In the hybrid IPN alignment layer system, the competition between poly(vinyl cinnamate) (PVCi) favoring planar alignment and poly(dimethyl siloxane) (PDMS) favoring vertical alignment made it possible to achieve pretilt angle in a wide range from 0° to 90°, and adjust pretilt angle as a function of PDMS content. In addition, we achieved the high azimuthal anchoring energy at the intermediate pretilt angle by using PDMS as the vertical-aligning component.

© 2009 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: July 2, 2009
Revised Manuscript: August 11, 2009
Manuscript Accepted: August 16, 2009
Published: September 2, 2009

Dowon Ahn, Yong-Cheol Jeong, Seungwoo Lee, Jihye Lee, Yongjoon Heo, and Jung-Ki Park, "Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks," Opt. Express 17, 16603-16612 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, “Applications of nematic liquid crystals” in Alignment Technologies and Applications of Liquid Crystal Devices, G. W. Gray, J. W. Goodby, and A. Fukuda, eds. (Taylor & Francis, 2005), pp. 117–121.
  2. J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972). [CrossRef]
  3. H. Hatoh, K. Shohara, Y. Kinoshita, and N. Ookoshi, “Molecular tilt direction in a slightly tilted homeotropic aligned liquid crystal cell,” Appl. Phys. Lett. 63(26), 3577–3579 (1993). [CrossRef]
  4. G. P. Sinha, B. Wen, and C. Rosenblatt, “Large, continuously controllable nematic pretilt from vertical orientation,” Appl. Phys. Lett. 79(16), 2543–2545 (2001). [CrossRef]
  5. H. D. Jayathilake, M. H. Zhu, C. Rosenblatt, A. N. Bordenyuk, C. Weeraman, and A. V. Benderskii, “Rubbing-induced anisotropy of long alkyl side chains at polyimide surfaces,” J. Chem. Phys. 125(6), 064706 (2006). [CrossRef]
  6. F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett. 88(5), 051910 (2006). [CrossRef]
  7. F. S. Yeung, F. C. Xie, J. T. Wan, F. K. Lee, O. K. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006). [CrossRef]
  8. K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90(19), 194102 (2007). [CrossRef]
  9. J. Y. Ho, V. G. Chigrinov, and H. S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90(24), 243506 (2007). [CrossRef]
  10. J.-H. Lee, D.-S. Kang, C. M. Clarke, and C. Rosenblatt, “Full control of nematic pretilt angle using spatially homogeneous mixtures of two polyimide alignment materials,” J. Appl. Phys. 105(2), 023508 (2009). [CrossRef]
  11. J. B. Kim, K. C. Kim, H. J. Ahn, B. H. Hwang, D. C. Hyun, and H. K. Baik, “Variable liquid crystal pretilt angles on various compositions of alignment layers,” Appl. Phys. Lett. 90(4), 043515 (2007). [CrossRef]
  12. J.-H. Seo, H. J. Jang, S. R. Lee, T.-H. Yoon, J. C. Kim, I.-B. Kang, and C. H. Oh, “Wide Pretilt Angle Control of Liquid Crystal Display Device by Ion Beam Exposure on the Vertical Aligning Layer,” Jpn. J. Appl. Phys. 46, L1074–L1076 (2007). [CrossRef]
  13. S. Furumi and K. Ichimura, “Photogeneration of High Pretilt Angles of Nematic Liquid Crystals by Non-Polarized Light Irradiation of Azobenzene-Containing Polymer Films,” Adv. Funct. Mater. 14(3), 247–254 (2004). [CrossRef]
  14. B. Zhang, F. K. Lee, O. K. C. Tsui, and P. Sheng, “Liquid crystal orientation transition on microtextured substrates,” Phys. Rev. Lett. 91(21), 215501 (2003). [CrossRef] [PubMed]
  15. J. B. Kim, K. C. Kim, H. J. Ahn, B. H. Hwang, J. T. Kim, S. J. Jo, C. S. Kim, H. K. Baik, C. J. Choi, M. K. Jo, Y. S. Kim, J. S. Park, and D. Kang, “No bias pi cell using a dual alignment layer with an intermediate pretilt angle,” Appl. Phys. Lett. 91(2), 023507 (2007). [CrossRef]
  16. Y.-J. Lee, J. S. Gwag, Y.-K. Kim, S. I. Jo, S.-G. Kang, Y. R. Park, and J.-H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94(4), 041113 (2009). [CrossRef]
  17. S.-C. Jeng, S.-J. Hwang, and C.-Y. Yang, “Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells,” Opt. Lett. 34(4), 455–457 (2009). [CrossRef] [PubMed]
  18. K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with a different content of side-chain,” J. Appl. Phys. 104(11), 113528 (2008). [CrossRef]
  19. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992). [CrossRef]
  20. S. J. Sung, K. Y. Cho, J. H. Yoo, W. S. Kim, H. S. Chang, I.-W. Cho, and J. K. Park, “Dimerization behavior of cinnamate group attached to flexible polymer backbone and its effect on the molecular orientation,” Chem. Phys. Lett. 394(4–6), 238–243 (2004). [CrossRef]
  21. S. J. Sung, K. Y. Cho, H.-D. Hah, J.-M. Lee, H. K. Shim, and J. K. Park, “Two different reaction mechanisms of cinnamate side groups attached to the various polymer backbones,” Polymer (Guildf.) 47(7), 2314–2321 (2006). [CrossRef]
  22. G. C. Meyer, “The influence of stannous octanolate on the polymerization of acrylic compounds,” Makromol. Chem., Rapid. Commun. 4(4), 221–225 (1983). [CrossRef]
  23. X. W. He, J. M. Widmaier, J. E. Herz, and G. C. Meyer, “Polydimethylsiloxane/poly(methylmethacrylate) interpenetrating polymer networks: 1. Efficiency of stannous octoate as catalyst in the formation of polydimethylsiloxane networks in methyl methacrylate,” Polymer (Guildf.) 30(2), 364–368 (1989). [CrossRef]
  24. X. W. He, J. M. Widmaier, J. E. Herz, and G. C. Meyer, “Polydimethylsiloxane/poly(methyl methacrylate) interpenetrating polymer networks: 2. Synthesis and properties,” Polymer (Guildf.) 33(4), 866–871 (1992). [CrossRef]
  25. R. Vendamme, S.-Y. Onoue, A. Nakao, and T. Kunitake, “Robust free-standing nanomembranes of organic/inorganic interpenetrating networks,” Nat. Mater. 5(6), 494–501 (2006). [CrossRef] [PubMed]
  26. S. Lee, Y.-C. Jeong, Y. Heo, S. I. Kim, Y.-S. Choi, and J.-K. Park, “Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage,” J. Mater. Chem. 19(8), 1105–1115 (2009). [CrossRef]
  27. Y. W. Li, J. Y. L. Ho, F. S. Y. Yeung, and H. S. Kwok, “Simultaneous determination of large pretilt angles and cell gap in liquid crystal displays,” J. Disp. Technol. 4(1), 13–17 (2008). [CrossRef]
  28. X. T. Li, D. H. Pei, S. Kobayashi, and Y. Iimura, “Measurement of Azimuthal Anchoring Energy at Liquid Crystal/Photopolymer Interface,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L432–L434 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited