OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16632–16645

Chip-scale spectrometry based on tapered hollow Bragg waveguides

R.G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J.N. McMullin  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16632-16645 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a micro-spectrometer that exploits out-of-plane radiation at mode cutoff in a tapered leaky waveguide clad by omnidirectional Bragg reflectors. The device can be viewed as a side-coupled, tapered Fabry-Perot cavity. An effective-index transfer-matrix model reveals that optimal resolution is dependent on the reduction or mitigation of back-reflection and standing waves leading up to the cutoff point. We address this by insertion of low numerical aperture optics between the taper and the detector, and demonstrate an experimental resolution as small as ~1 nm and operating bandwidth >100 nm in the 1550 nm range, from a tapered waveguide with footprint ~50 μm x 500 μm. The device combines the small size of a Fabry-Perot instrument with the detector array compatibility and fixed optics of a grating-based instrument.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: July 15, 2009
Revised Manuscript: August 16, 2009
Manuscript Accepted: August 31, 2009
Published: September 2, 2009

R.G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J.N. McMullin, "Chip-scale spectrometry based on tapered hollow Bragg waveguides," Opt. Express 17, 16632-16645 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “Diverse applications drive growth in spectroscopy market,” Nat. Photonics 2, 544 (2008).
  2. G. A. Neece, “Microspectrometers – an industry & instrumentation overview,” Proc. of SPIE 7086, 708602–1-8, (2008).
  3. G. M. Yee, N. I. Maluf, P. A. Hing, M. Abin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sen. Act. A 58(1), 61–66 (1997). [CrossRef]
  4. O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, “Fluorescence spectrometer-on-a-fluidic-chip,” Lab Chip 7(5), 626–629 (2007). [CrossRef] [PubMed]
  5. X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE 5699, 511–516 (2005). [CrossRef]
  6. R. F. Wolfenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004). [CrossRef]
  7. S. Grabarnik, A. Emadi, E. Sokolova, G. Vdovin, and R. F. Wolffenbuttel, “Optimal implementation of a microspectrometer based on a single flat diffraction grating,” Appl. Opt. 47(12), 2082–2090 (2008). [CrossRef] [PubMed]
  8. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007). [CrossRef] [PubMed]
  9. D. S. Goldman, P. L. White, and N. C. Anheier, “Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,” Appl. Opt. 29(31), 4583–4589 (1990). [CrossRef] [PubMed]
  10. K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14(9), 4064–4072 (2006). [CrossRef] [PubMed]
  11. E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng. 15(9), 1770–1776 (2005). [CrossRef]
  12. P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998). [CrossRef]
  13. R. A. Crocombe, D. C. Flanders, and W. Atia, “Micro-optical instrumentation for process spectroscopy,” Proc. SPIE 5591, 11–25 (2004). [CrossRef]
  14. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007). [CrossRef] [PubMed]
  15. O. Schmidt, P. Kiesel, and M. Bassler, “Performance of chip-size wavelength detectors,” Opt. Express 15(15), 9701–9706 (2007). [CrossRef] [PubMed]
  16. N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express 16(5), 2894–2908 (2008). [CrossRef] [PubMed]
  17. N. Ponnampalam and R. G. Decorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15(20), 12595–12604 (2007). [CrossRef] [PubMed]
  18. C. H. Tang, “Delay equalization by tapered cutoff waveguides,” IEEE Trans. Microw. Theory Tech. 12(6), 608–615 (1964). [CrossRef]
  19. T. Miura, Y. Yokota, and F. Koyama, “Proposal of tunable demultiplexer based on tapered hollow waveguides with highly reflective multilayer mirrors,” Proc. of LEOS 2005, 272–273 (2005).
  20. A. Imamura, N. Kitabayashi, and F. Koyama, “Modeling and experiment on tapered hollow waveguide multiplexer for multi-wavelength VCSEL array,” IEICE Electron. Express 5(12), 451–456 (2008). [CrossRef]
  21. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004). [CrossRef]
  22. S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun. 239(1-3), 153–160 (2004). [CrossRef]
  23. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007). [CrossRef]
  24. M. Florja?czyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15(26), 18176–18189 (2007). [CrossRef] [PubMed]
  25. P. Bermel, J. D. Joannopoulos, Y. Fink, P. A. Lane, and C. Tapalian, “Properties of radiating pointlike sources in cylindrical omnidirectionally reflecting waveguides,” Phys. Rev. B 69(3), 035316 (2004). [CrossRef]
  26. M. Xiang, Y. M. Cai, Y. M. Wu, J. Y. Yang, and Y. L. Wang, “Experimental study of the free spectral range (FSR) in FPI with a small plate gap,” Opt. Express 11(23), 3147–3152 (2003). [CrossRef] [PubMed]
  27. N. Ponnampalam and R. G. DeCorby, “Analysis and fabrication of hybrid metal-dielectric omnidirectional Bragg reflectors,” Appl. Opt. 47(1), 30–37 (2008). [CrossRef]
  28. M. A. Muriel, A. Carballar, and J. Azana, “Field distributions inside fiber gratings,” IEEE J. Quantum Electron. 35(4), 548–558 (1999). [CrossRef]
  29. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., Oxford University Press, New York (2007).
  30. R. Z. Morawski, “Spectrophotometric applications of digital signal processing,” Meas. Sci. Technol. 17(9), R117–R144 (2006). [CrossRef]
  31. B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994). [CrossRef]
  32. C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998). [CrossRef]
  33. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008). [CrossRef] [PubMed]
  34. T. Yamada, and T. Kobayashi, “Collimator and spectrophotometer,” United States Patent 7,114,232 (2006).
  35. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18(1), 226–228 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited