OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16681–16695

Experimental Bioluminescence Tomography with Fully Parallel Radiative-transfer-based Reconstruction Framework

Yujie Lu, Hidevaldo B. Machado, Ali Douraghy, David Stout, Harvey Herschman, and Arion F. Chatziioannou  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16681-16695 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bioluminescence imaging is a very sensitive imaging modality, used in preclinical molecular imaging. However, in its planar projection form, it is non-quantitative and has poor spatial resolution. In contrast, bioluminescence tomography (BLT) promises to provide three dimensional quantitative source information. Currently, nearly all BLT reconstruction algorithms in use employ the diffusion approximation theory to determine light propagation in tissues. In this process, several approximations and assumptions that are made severely affect the reconstruction quality of BLT. It is therefore necessary to develop novel reconstruction methods using high-order approximation models to the radiative transfer equation (RTE) as well as more complex geometries for the whole-body of small animals. However, these methodologies introduce significant challenges not only in terms of reconstruction speed but also for the overall reconstruction strategy. In this paper, a novel fully-parallel reconstruction framework is proposed which uses a simplified spherical harmonics approximation (SPN). Using this framework, a simple linear relationship between the unknown source distribution and the surface measured photon density can be established. The distributed storage and parallel operations of the finite element-based matrix make SPN -based spectrally resolved reconstruction feasible at the small animal whole body level. Performance optimization of the major steps of the framework remarkably improves reconstruction speed. Experimental reconstructions with mouse-shaped phantoms and real mice show the effectiveness and potential of this framework. This work constitutes an important advance towards developing more precise BLT reconstruction algorithms that utilize high-order approximations, particularly second-order self-adjoint forms to the RTE for in vivo small animal experiments.

© 2009 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 10, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: August 13, 2009
Published: September 3, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Yujie Lu, Hidevaldo B. Machado, Ali Douraghy, David Stout, Harvey Herschman, and Arion F. Chatziioannou, "Experimental bioluminescence tomography with fully parallel radiative-transfer-based reconstruction framework," Opt. Express 17, 16681-16695 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weisslder, "Looking and listening to light: the evolution of whole body photonic imaging," Nat. Biotechnol. 23,313-320 (2005). [CrossRef] [PubMed]
  2. R. Weissleder, "Scaling down imaging: Molecular mapping of cancer in mice," Nat. Rev. Cancer 2,11-18 (2002). [CrossRef] [PubMed]
  3. J. Virostko, A. C. Powers, and E. D. Jansen, "Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images," Appl. Opt. 46,2540-2547 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-13-2540. [CrossRef] [PubMed]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50,R1-R43 (2005). [CrossRef] [PubMed]
  5. E. E. Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport, (JohnWiley & Sons, New York, 1984).
  6. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13,6756-6771 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6756. [CrossRef] [PubMed]
  7. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12,3996-4000 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-3996. [CrossRef] [PubMed]
  8. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14,8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211. [CrossRef] [PubMed]
  9. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt. Lett. 31,365-367 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-3-365. [CrossRef] [PubMed]
  10. A. D. Klose, "Transport-theory-based stochastic image reconstruction of bioluminescent sources," J. Opt. Soc. Am. A 24,1601-1608 (2007), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-6-1601. [CrossRef]
  11. C. R. E. de Oliveira, "An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering," Progr. Nucl. Energ. 18,227-236 (1986). [CrossRef]
  12. S. Wright, M. Schweiger, and S. R. Arridge, "Reconstruction in optical tomography using the PN approximations," Meas. Sci. Technol. 18,79-86 (2007). [CrossRef]
  13. A. D. Klose and E. W. Larsen, "Light transport in biological tissue based on the simplified spherical harmonics equations," J. Comput. Phys. 220,441-470 (2006). [CrossRef]
  14. Y. Lu and A. F. Chatziioannou, "A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model," Commun. Numer. Methods Eng. 25,751-770 (2009). [CrossRef]
  15. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31,2289-2299 (2004). [CrossRef] [PubMed]
  16. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12,024007 (2007). [CrossRef] [PubMed]
  17. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50,5421-5441 (2005). [CrossRef] [PubMed]
  18. Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52,4497-4512 (2007). [CrossRef] [PubMed]
  19. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50,4225-4241 (2005). [CrossRef] [PubMed]
  20. T. Vo-Dinh, Biomedical Photonics Handbook, (CRC Press, 2002).
  21. A. Ishimaru, Wave propagation and scattering in random media, (IEEE Press, 1997).
  22. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11,2727-2741 (1994), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-11-10-2727. [CrossRef]
  23. S. S. Rao, The finite element method in engineering, (Butterworth-Heinemann, Boston, 1999).
  24. G. Karypis and V. Kumar, "Multilevel k-way partitioning scheme for irregular graphs," J. Parallel Distrib. Comput. 48,96-129 (1998). [CrossRef]
  25. G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.), (Johns Hopkins University Press, 1996).
  26. M. Benzi, "Preconditioning techniques for large linear systems: a survey," J. Comput. Phys. 182,418-477 (2002). [CrossRef]
  27. J. Nocedal and S. J. Wright, Numerical Optimization, (Springer, New York, 1999). [CrossRef]
  28. S. J. Benson and J. Moré, "A limited-memory variable-metric algorithm for bound-constrained minimization," Technical Report ANL/MCS-P909-0901, Mathematics and Computer Science Division, Argonne National Laboratory (2001).
  29. B. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, "libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations," Eng. Comput. 22,237-254 (2006). [CrossRef]
  30. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Web page, 2001, http://www.mcs.anl.gov/petsc.
  31. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32,559-568 (1993), http://www.opticsinfobase.org/abstract.cfm?URI=ao-32-4-559. [CrossRef] [PubMed]
  32. R. D. Falgout and U. M. Yang, "hypre: A library of high performance preconditioners," in Proceedings of the International Conference on Computational Science-Part III, p. 632-641 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited