OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16756–16765

A theoretical model for sampled grating DBR laser integrated with SOA and MZ modulator

Lei Dong, Shengzhi Zhao, Shan Jiang, and Shuihua Liu  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16756-16765 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model is presented for simulating the sampled grating distributed Bragg reflector (SGDBR) laser integrated with semiconductor optical amplifier (SOA) and Mach-Zehnder (MZ) modulator. In this model, the active and passive sections are processed separately. The active region of laser and the SOA section are modeled by time domain traveling wave (TDTW) method. While the spectral properties of the SG and the MZ modulator are firstly calculated by Transfer-Matrix Method (TMM) and Beam Propagation Method (BPM), respectively, and then transformed into time domain using digital filter approach. Furthermore, the nonuniform carrier-dependence of gain and refractive index are also incorporated via Effective Bloch Equations (EBE). Compared with the full time-domain method, our model would be more flexible and efficient. The static and modulation performances of device are successfully simulated. This indicates that it can be a powerful platform for investigating the complex Photonic Integrated Circuits (PICs).

© 2009 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(250.4110) Optoelectronics : Modulators
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:

Original Manuscript: May 27, 2009
Revised Manuscript: July 10, 2009
Manuscript Accepted: July 16, 2009
Published: September 4, 2009

Lei Dong, Shengzhi Zhao, Shan Jiang, and Shuihua Liu, "A theoretical model for sampled grating DBR laser integrated with SOA and MZ modulator," Opt. Express 17, 16756-16765 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. P. Kaminow, “Optical integrated circuits: a personal perspective,” J. Lightwave Technol. 26(9), 994–1004 (2008). [CrossRef]
  2. Infinera white paper, “Photonic Integrated Circuits,” http://www.infinera.com .
  3. J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, and L. A. Coldren, “A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1113–1117 (2003). [CrossRef]
  4. P. Brosson and P. Delansay, “Modeling of the static and dynamic responses of an integrated laser Mach-Zehnder modulator and comparison with an integrated laser EA modulator,” J. Lightwave Technol. 16(12), 2407–2418 (1998). [CrossRef]
  5. X. Li, W. P. Huang, D. M. Adams, C. Rolland, and T. Makino, “Modeling and design of a DFB laser integrated with a Mach–Zehnder modulator,” IEEE J. Quantum Electron. 34(10), 1807–1815 (1998). [CrossRef]
  6. J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (The Institution of Electrical Engineers, London, 1998).
  7. E. A. Avrutin, V. Nikolaev, and D. Gallagher, “Monolithic mode-locked semiconductor lasers,” NUSOD 185–215 (2004).
  8. S. F. Yu and N. Q. Ngo, “Simple model for a distributed feedback laser integrated with a Mach-Zehnder modulator,” IEEE J. Quantum Electron. 38(8), 1062–1074 (2002). [CrossRef]
  9. W. Li, W. Huang, and X. Li, “Digital Filter Approach for Simulation of a Complex Integrated Laser Diode Based on the Traveling-Wave Model,” IEEE J. Quantum Electron. 40(5), 473–480 (2004). [CrossRef]
  10. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33(9), 1543–1550 (1997). [CrossRef]
  11. J. Park and Y. Kawakami, “Time-domain models for the performance simulation of semiconductor optical amplifiers,” Opt. Express 14(7), 2956–2968 (2006). [CrossRef] [PubMed]
  12. W. W. Chow, and S. W. Koch, Semiconductor-laser fundamentals (Springer-Verlag, Berlin, 1999).
  13. S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B 43(12), 9649–9661 (1991). [CrossRef]
  14. L. Dong, R. K. Zhang, D. L. Wang, S. Jiang, Y. L. Yu, S. Z. Zhao, and S. H. Liu, “Modeling wavelength switching of widely tunable sampled-grating DBR lasers using traveling-wave model with digital filter approach,” IEEE Photon. Technol. Lett. 20(20), 1721–1723 (2008). [CrossRef]
  15. T. Makino, “Transfer-Matrix Formulation of Spontaneous Emission Noise of DFB Semiconductor Lasers,” J. Lightwave Technol. 9(1), 84–91 (1991). [CrossRef]
  16. J. Buus, M. C. Amann, and D. J. Blumenthal, Tunable Laser Diodes and Related Optical Sources (John Wiley & Sons, Hoboken, New Jersey, 2005).
  17. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6(1), 150–162 (2000). [CrossRef]
  18. OlympiOs manual, http://www.c2v.nl/ .
  19. D. Kincaid, and W. Cheney, Numerical analysis-mathematics of scientific computing (China Machine Press, Beijing, 2005).
  20. S. K. Mitra, Digital Signal Processing-A Compute-Based Approach (Publishing House of Electronics Industry, Beijing, 2006).
  21. E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photon. Technol. Lett. 14(9), 1243–1245 (2002). [CrossRef]
  22. J. F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol. 10(1), 63–70 (1992). [CrossRef]
  23. P. Kaczmarski and P. E. Lagasse, “Bidirectional beam propagation method,” Electron. Lett. 24(11), 675–676 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited