OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16766–16775

Reduction of the amplified spontaneous emission threshold in semiconducting polymer waveguides on porous silica.

Fernando Lahoz, Claudio J. Oton, Nestor Capuj, Miriam Ferrer-González, Stephanie Cheylan, and Daniel Navarro-Urrios  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 16766-16775 (2009)
http://dx.doi.org/10.1364/OE.17.016766


View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hybrid organic-inorganic monomode waveguides of conjugated polymers on porous silicon (PS) substrates have been fabricated. Different low refractive index PS substrates, varying from 1.46 down to 1.18 have been studied. Amplified spontaneous emission (ASE) has been observed for all the samples and the ASE threshold has been monitored as a function of the PS refractive index. A decrease in the ASE threshold is detected when the PS refractive index decreases. These results have been analysed in the frame of a four level waveguide amplifier model and the theoretical predictions are in agreement with the experimental data.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: June 4, 2009
Revised Manuscript: July 21, 2009
Manuscript Accepted: July 25, 2009
Published: September 4, 2009

Citation
Fernando Lahoz, Claudio J. Oton, Nestor Capuj, Miriam Ferrer-González, Stephanie Cheylan, and Daniel Navarro-Urrios, "Reduction of the amplified spontaneous emission threshold in semiconducting polymer waveguides on porous silica.," Opt. Express 17, 16766-16775 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, “Light-Emitting Diodes Based on Conjugated Polymers,” Nature 347(6293), 539–541 (1990). [CrossRef]
  2. N. Tessler, “Lasers Based on Semiconducting Organic Materials,” Adv. Mater. 11(5), 363–370 (1999). [CrossRef]
  3. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007). [CrossRef] [PubMed]
  4. I. D. W. Samuel and G. A. Turnbull, “Polymer lasers: recent advances,” Mater. Today 7(9), 28–35 (2004). [CrossRef]
  5. M. Reufer, J. Feldmann, P. Rudati, A. Ruhl, D. Müller, K. Meerholz, C. Karnutsch, M. Gerken, and U. Lemmer, “Amplified spontaneous emission in an organic semiconducting multilayer waveguide structure including a highly conductive transparent electrode,” Appl. Phys. Lett. 86(22), 221102 (2005). [CrossRef]
  6. G. A. Turnbull, P. Andrews, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003). [CrossRef]
  7. C. Karnutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, “Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback,” Appl. Phys. Lett. 89(20), 201108 (2006). [CrossRef]
  8. T. Riedl, T. Rabe, H. H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006). [CrossRef]
  9. Y. Yang, G. A. Turnbull, and I. D. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008). [CrossRef]
  10. G. Heliotis, S. A. Choulis, G. Itskos, R. Xia, R. Murray, P. N. Stavrinou, and D. D. C. Bradley, “Low-threshold lasers based on a high-mobility semiconducting polumer,” Appl. Phys. Lett. 88(8), 081104 (2006). [CrossRef]
  11. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low threshold in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers,” Adv. Mater. 21(7), 799–802 (2009). [CrossRef]
  12. F. Laquai, A. K. Mishra, K. Müllen, and R. H. Friend, “Amplified Spontaneous Emission of Poly(ladder-type phenylene)s–The Influence of Photophysical Properties on ASE Thresholds,” Adv. Funct. Mater. 18(20), 3265–3275 (2008). [CrossRef]
  13. G. Heliotis, R. D. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004). [CrossRef]
  14. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconducting lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007). [CrossRef]
  15. I. B. Martini, I. M. Craig, W. C. Molenkamp, H. Miyata, S. H. Tolbert, and B. J. Schwartz, “Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment,” Nat. Nanotechnol. 2(10), 647–652 (2007). [CrossRef]
  16. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82(3), 909–965 (1997). [CrossRef]
  17. E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Porous silicon-based rugate filters,” Appl. Opt. 44(26), 5415–5421 (2005). [CrossRef] [PubMed]
  18. P. Ferrand, D. Loi, and R. Romenstain, “Photonic band-gap guidance in high-porosity luminescent porous silicon,” Appl. Phys. Lett. 79(19), 3017–3019 (2001). [CrossRef]
  19. M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003). [CrossRef]
  20. F. Lahoz, N. Capuj, C. Oton, and S. Cheylan, “Optical gain in conjugated polymer hybrid structures based on porous silicon waveguides,” Chem. Phys. Lett. 463(4-6), 387–390 (2008). [CrossRef]
  21. C. J. Oton, E. Lorenzo, N. Capuj, F. Lahoz, I. R. Martin, D. Navarro-Urrios, M. Ghulinyan, F. Sbrana, Z. Gaburro, and L. Pavesi, “Porous silicon-based Notch filters and waveguides,” Proc. SPIE Int. Soc. Opt. Eng. 5840, 434–443 (2005).
  22. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395 (1971). [CrossRef] [PubMed]
  23. M. Yan, L. J. Rothberg, E. W. Kwock, and T. M. Miller, “Interchain excitations in conjugated polymers,” Phys. Rev. Lett. 75(10), 1992–1995 (1995). [CrossRef] [PubMed]
  24. K. Koynov, A. Bahtiar, T. Ahn, C. Bubeck, and H. H. Horhold, “Molecular weight dependence of birefringence of thin films of the conjugated polymer poly[2-methoxy-5-(2-ethyl-hexyloxy)-1, 4-phenylenevinylene],” Appl. Phys. Lett. 84(19), 3792–3794 (2004). [CrossRef]
  25. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Diaz-Garcia, and A. J. Heeger, “Amplified spontanesous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998). [CrossRef]
  26. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000). [CrossRef]
  27. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix-theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1(7), 742–753 (1984). [CrossRef]
  28. C. M. Heller, I. H. Campbell, B. K. Laurich, D. L. Smith, D. D. C. Bradley, P. L. Burn, J. P. Ferraris, and K. Müllen, “Solid-state-concentration effects on the optical absorption and emission of poly(p-phenylene vinylene)-related materials,” Phys. Rev. B 54(8), 5516–5522 (1996). [CrossRef]
  29. J. P. Schmidtke, J. S. Kim, J. Gierschner, C. Silva, and R. H. Friend, “Optical spectroscopy of a polyfluorene copolymer at high pressure: intra- and intermolecular interactions,” Phys. Rev. Lett. 99(16), 167401 (2007). [CrossRef] [PubMed]
  30. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, and M. A. Diaz-Garcia, “Concentration dependence of amplified spontaneous emission in organic-based waveguides,” Org. Electron. 7(5), 319–329 (2006). [CrossRef]
  31. G.- Wegmann, B. Schweitzer, M. Hopmeier, M. Oestreich, H. Giessen, and R. F. Mahrt., “Conjugated polymer lasers: emission characteristics and gain mechanism,” Phys. Chem. Chem. Phys. 1(8), 1795–1800 (1999). [CrossRef]
  32. R. Guptak, J. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Sradanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited