OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16783–16791

Plasmonic interference nanolithography with a double-layer planar silver lens structure

Beibei Zeng, Xufeng Yang, Changtao Wang, and Xiangang Luo  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 16783-16791 (2009)
http://dx.doi.org/10.1364/OE.17.016783


View Full Text Article

Enhanced HTML    Acrobat PDF (258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present here a surface plasmon interference lithography method with double-layer planar silver lens. This kind of lithography method provides interference patterns with sufficient contrast for lithography process and simple structure for the convenience of fabrication. Rigorous coupled wave analysis method has been performed with practical parameters to testify this lithography scheme. Furthermore, some key factors influencing the pattern quality have been discussed. It is pointed out that three factors mainly determine the resolution of the interference patterns, and therefore we give a theoretical resolution limit of about 1/12 wavelength to the surface plasmon interference lithography method.

© 2009 OSA

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: July 1, 2009
Revised Manuscript: July 29, 2009
Manuscript Accepted: August 28, 2009
Published: September 4, 2009

Citation
Beibei Zeng, Xufeng Yang, Changtao Wang, and Xiangang Luo, "Plasmonic interference nanolithography with a double-layer planar silver lens structure," Opt. Express 17, 16783-16791 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16783


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  2. R. S. Dhaliwal, W. A. Enichen, S. D. Golldaday, M. S. Gordon, R. A. Kendall, J. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel, and E. V. Tressler, ““PREVAIL- Electron projection technology approach for next generation lithography,” IBM,” J. Res. Dev. (Srinagar) 45, 615–638 (2001).
  3. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. Minne, T. Hunt, and C. F. Quate, “Terabitper-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75(22), 3566–3568 (1999). [CrossRef]
  4. J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002). [CrossRef]
  5. M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005). [CrossRef]
  6. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004). [CrossRef]
  7. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005). [CrossRef] [PubMed]
  8. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguide: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  9. X. J. Jiao, P. Wang, D. Zhang, L. Tang, J. Xie, and H. Ming, “Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure,” Opt. Express 14(11), 4850–4860 (2006). [CrossRef] [PubMed]
  10. T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008). [CrossRef] [PubMed]
  11. M. J. Weber, Handbook of Optical Materials, CRC, Boston, (2003).
  12. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  13. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  14. L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. B 14(10), 2758 (1997). [CrossRef]
  15. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  16. D. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B 23(3), 461 (2006). [CrossRef]
  17. M. J. Madou, Fundamentals of Microfabrication, CRC, Boca Raton, (2002).
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 3 Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited