OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16792–16800

Modeling of enhanced field confinement and scattering by optical wire antennas

Andrea Locatelli, Costantino De Angelis, Daniele Modotto, Stefano Boscolo, Francesco Sacchetto, Michele Midrio, Antonio-D. Capobianco, Filippo M. Pigozzo, and Carlo G. Someda  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16792-16800 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the application of full-wave and semi-analytical numerical tools for the modeling of optical wire antennas, with the aim of providing novel guidelines for analysis and design. The concept of antenna impedance at optical frequencies is reviewed by means of finite-element simulations, whereas a surface-impedance integral equation is derived in order to perform an accurate and efficient calculation of the current distribution, and thereby to determine the equivalent-circuit parameters. These are introduced into simple circuits models, directly borrowed from radio frequency, which are applied in order to model the phenomena of enhanced field confinement at the feed gap and light scattering by optical antennas illuminated by plane waves.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Integrated Optics

Original Manuscript: July 7, 2009
Revised Manuscript: July 30, 2009
Manuscript Accepted: July 31, 2009
Published: September 4, 2009

Andrea Locatelli, Costantino De Angelis, Daniele Modotto, Stefano Boscolo, Francesco Sacchetto, Michele Midrio, Antonio-D. Capobianco, Filippo M. Pigozzo, and Carlo G. Someda, "Modeling of enhanced field confinement and scattering by optical wire antennas," Opt. Express 17, 16792-16800 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006). [CrossRef] [PubMed]
  3. J. J. Greffet, "Nanoantennas for light emission," Science 308,1561 (2005). [CrossRef] [PubMed]
  4. L. Novotny, "Optical antennas tuned to pitch," Nature (London) 455,887 (2008). [CrossRef]
  5. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308,1607-1608 (2005). [CrossRef] [PubMed]
  6. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2,234-237 (2008). [CrossRef]
  7. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008). [CrossRef]
  8. R. L. Olmon, P. M. Krenza, A. C. Jones, G. D. Boreman, and M. B. Raschke, "Near-field imaging of optical antenna modes in the mid infrared," Opt. Express 16,20295-20305 (2008). [CrossRef] [PubMed]
  9. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the nearfield oscillations of loaded plasmonic nanoantennas," Nature Photon. 3,287-291 (2009). [CrossRef]
  10. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef]
  11. A. Alú, and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett. 101, 043901 (2008). [CrossRef]
  12. A. Alú and N. Engheta, "Tuning the scattering response of optical nanoantennas with nanocircuit loads," Nature Photon. 2,307-310 (2008). [CrossRef]
  13. R. W. P. King, "The linear antenna - eighty years of progress," Proceedings of the IEEE 55,2-16 (1967). [CrossRef]
  14. C. A. Balanis, Antenna theory: analysis and design (Wiley, 2005).
  15. S. J. Orfanidis, Electromagnetic waves and antennas, http://www.ece.rutgers.edu/?orfanidi/ewa/, (2008).
  16. R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," Journ. of Computational and Theoretical Nanoscience 4,686-691 (2007).
  17. H. Fischer, and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16,9144-9154 (2008). [CrossRef] [PubMed]
  18. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420-(1-13) (2005). [CrossRef]
  19. G. W. Hanson, "On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas," IEEE Trans. Antennas Propag. 54,3677-3685 (2006). [CrossRef]
  20. G. W. Hanson, "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas Propag.Magazine 50,66-77 (2008). [CrossRef]
  21. R. W. P. King, and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas Propag. 14,524-534 (1966). [CrossRef]
  22. J. A. Stratton, Electromagnetic theory (McGraw-Hill, 1941).
  23. J. Wen, S. Romanov, and U. Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Opt. Express 17,5925-5932 (2009). [CrossRef] [PubMed]
  24. J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9,1897-1902 (2009). [CrossRef] [PubMed]
  25. COMSOL Multiphysics 3.5, COMSOL Inc. (http://www.comsol.com).
  26. CST Microwave Studio2009, Darmstadt, Germany.
  27. R. E. Collin, "Limitations of the Thévenin and Norton equivalent circuits for a receiving antenna," IEEE Antennas Propag.Magazine 45,119-124 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited