OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16801–16808

Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser

Rainer Leonhardt, Benjamin R. Biedermann, Wolfgang Wieser, and Robert Huber  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 16801-16808 (2009)
http://dx.doi.org/10.1364/OE.17.016801


View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the highly efficient non-linear optical frequency conversion of the wavelength swept output from a Fourier Domain Mode Locked (FDML) laser. Different concepts for power scaling of FDML lasers by post-amplification with active fibers are presented. A two-stage post-amplification of an FDML laser with an amplification factor of 300 up to a peak power of 1.5 W is used to supply sufficient power levels for non-linear conversion. Using a single-mode dispersion shifted fiber (DSF), we convert this amplified output that covers the region between 1541 nm and 1545 nm to a wavelength range from 1572 nm to 1663 nm via modulation instability (MI). For this four wave mixing process we observe an efficiency of ~40%. The anti-Stokes signal between 1435 nm and 1516 nm was observed with lower conversion efficiency. In addition to shifting the wavelength, the effect of MI also enables a substantial increase in the wavelength sweep rate of the FDML laser by a factor of ~50 to 0.55 nm/ns.

© 2009 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2410) Fiber optics and optical communications : Fibers, erbium
(140.3600) Lasers and laser optics : Lasers, tunable
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 1, 2009
Revised Manuscript: August 7, 2009
Manuscript Accepted: August 10, 2009
Published: September 4, 2009

Citation
Rainer Leonhardt, Benjamin R. Biedermann, Wolfgang Wieser, and Robert Huber, "Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser," Opt. Express 17, 16801-16808 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16801


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3225 . [CrossRef] [PubMed]
  2. M. Y. Jeon, J. Zhang, and Z. P. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16(6), 3727–3737 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3727 . [CrossRef] [PubMed]
  3. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16552 . [PubMed]
  4. Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19(3), 450–454 (2009), http://www.springerlink.com/content/p300147134334266/ . [CrossRef]
  5. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3513 . [CrossRef] [PubMed]
  6. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007), http://www.nature.com/nphoton/journal/v1/n12/abs/nphoton.2007.228.html . [CrossRef]
  7. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4376 . [CrossRef] [PubMed]
  8. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008), http://www.nature.com/labinvest/journal/v88/n4/full/labinvest20084a.html . [CrossRef] [PubMed]
  9. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-21-2556 . [CrossRef] [PubMed]
  10. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8916 . [CrossRef] [PubMed]
  11. C. M. Eigenwillig, W. Wieser, B. R. Biedermann, and R. Huber, “Subharmonic Fourier domain mode locking,” Opt. Lett. 34(6), 725–727 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-6-725 . [CrossRef] [PubMed]
  12. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6210 . [CrossRef] [PubMed]
  13. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-20-2975 . [CrossRef] [PubMed]
  14. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-14-2049 . [CrossRef] [PubMed]
  15. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6251 . [CrossRef] [PubMed]
  16. T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett. 33(23), 2815–2817 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-23-2815 . [CrossRef] [PubMed]
  17. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15115 . [CrossRef] [PubMed]
  18. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008), http://www.iovs.org/cgi/content/abstract/49/11/5103 . [CrossRef] [PubMed]
  19. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9947 . [CrossRef] [PubMed]
  20. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-6-626 . [CrossRef] [PubMed]
  21. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16(4), 2547–2554 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2547 . [CrossRef] [PubMed]
  22. Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282(1), 88–92 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.059 . [CrossRef]
  23. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. J. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-14095 . [CrossRef] [PubMed]
  24. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-22-2225 . [CrossRef] [PubMed]
  25. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1366387&isnumber=29921 . [CrossRef]
  26. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-7-762 . [CrossRef] [PubMed]
  27. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-8104 . [CrossRef] [PubMed]
  28. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14(20), 9491–9501 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9491 . [CrossRef] [PubMed]
  29. G. K. L. Wong, A. Y. H. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Continuous-wave tunable optical parametric generation in a photonic-crystal fiber,” J. Opt. Soc. Am. B 22(11), 2505–2511 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=josab-22-11-2505 . [CrossRef]
  30. C. Jirauschek, C. Eigenwillig, B. Biedermann, and R. Huber, “Fourier Domain Mode Locking Theory,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (IEEE, 2008), 1403–1404, http://www.opticsinfobase.org/abstract.cfm?uri=CLEO-2008-CTuFF2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited