OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16869–16876

Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index dielectric shells

A. E. Serebryannikov, P. V. Usik, and Ekmel Ozbay  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16869-16876 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (668 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strong reduction of the scattering cross section is obtained for subwavelength dielectric and conducting cylinders without any magnetism for both TE and TM polarizations. The suggested approach is based on the use of Fabry-Perot type radial resonances, which can appear in single-layer, high-ε, isotropic, and homogeneous shells with the properly chosen parameters. Frequencies of the minima of the scattering cross section, which are associated with the cloaking, typically depend on whether TE or TM polarization is considered. In some cases, large-positive-ε and large-negative-ε objects can be cloaked. In other cases, non-ideal multifrequency cloaking can be realized.

© 2009 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Physical Optics

Original Manuscript: June 19, 2009
Revised Manuscript: August 23, 2009
Manuscript Accepted: August 23, 2009
Published: September 8, 2009

A. E. Serebryannikov, P. V. Usik, and Ekmel Ozbay, "Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index," Opt. Express 17, 16869-16876 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  3. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008). [CrossRef] [PubMed]
  4. N.-A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007). [CrossRef] [PubMed]
  5. N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10(11), 115020 (2008). [CrossRef]
  6. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007). [CrossRef] [PubMed]
  7. A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045602 (2008). [CrossRef] [PubMed]
  8. P. Alitalo, O. Luukkonen, J. Mosig, and S. Tretyakov, “Broadband cloaking with volumetric structures composed of two-dimensional transmission-line networks,” Microw. Opt. Technol. Lett. 51(7), 1627–1631 (2009). [CrossRef]
  9. P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009). [CrossRef]
  10. A. E. Serebryannikov and E. Ozbay, “Multifrequency invisibility and masking of cylindrical dielectric objects using double-positive and double-negative metamaterials,” J. Opt. A, Pure Appl. Opt. (to appear).
  11. N. M. Litchinitser and V. M. Shalaev, “Photonic metamaterials,” Laser Phys. Lett. 5(6), 411–420 (2008). [CrossRef]
  12. D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008). [CrossRef] [PubMed]
  13. F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” N. J. Phys. 10(11), 115035 (2008). [CrossRef]
  14. S. Tusseau-Nenez, J.-P. Ganne, M. Maglione, A. Morell, J.-C. Niepce, and M. Pate, “BST ceramics: effect of attrition milling on dielectric properties,” J. Eur. Ceram. Soc. 24(10-11), 3003–3011 (2004). [CrossRef]
  15. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007). [CrossRef] [PubMed]
  16. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited