OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16947–16956

Proposal of a Grating-Based Optical Reflection Switch using Phase Change Materials

Xiaomin Wang, Masashi Kuwahara, Koichi Awazu, Paul Fons, Junji Tominaga, and Yoshimichi Ohki  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16947-16956 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have proposed a novel grating-based optical reflection switch using a phase change material (PCM). The device switches on/off light or shifts the light propagation direction by switching the PCM grating between its amorphous and crystalline states. Thus, the switching status is non-volatile and the device is promising for realizing low power consumption. The device structure was designed and optimized by numerical simulations to obtain high switching efficiency. It is shown that there exists a parameter window where high efficiency is achievable. The static switching characteristics were confirmed by finite-difference time-domain (FDTD) simulations. The design scheme can also be applied to other planar dielectric gratings.

© 2009 Optical Society of America

OCIS Codes
(210.4810) Optical data storage : Optical storage-recording materials
(230.1950) Optical devices : Diffraction gratings
(250.6715) Optoelectronics : Switching

ToC Category:

Original Manuscript: July 27, 2009
Revised Manuscript: August 27, 2009
Manuscript Accepted: August 31, 2009
Published: September 8, 2009

Xiaomin Wang, Masashi Kuwahara, Koichi Awazu, Paul Fons, Junji Tominaga, and Yoshimichi Ohki, "Proposal of a grating-based optical reflection switch using phase change materials," Opt. Express 17, 16947-16956 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Chen, K. A. Rubin, R. W. Barton, "Compound materials for reversible, phase-change optical data storage," Appl. Phys. Lett. 49, 502 (1986). [CrossRef]
  2. D. Strand, D. V. Tsu, R. Miller, M. Hennessey and D. Jablonski, "Optical routers based on Ovonic phase change materials," E/PCOS2006 (European Phase Change and Ovonics Symposium), Grenoble, May 29-31, 2006, http://www.epcos.org/library/papers/pdf 2006/pdf contributed/Strand.pdf.
  3. H. Tsuda, "Proposal of an optical switch using phase-change material for future photonic network nodes," PCOS2007 (The 19th Symposium on Phase Change Optical Information Storage), pp. 39-42, Atami, Nov. 29-30, 2007.
  4. H. Horii, J. H. Yi, J. H. Park, Y. H. Ha, I. G. Baek, S. O. Park, Y. N. Hwang, S. H. Lee, Y. T. Kim, K. H. Lee, U-In Chung, and J. T. Moon, "A novel cell technology using N-doped GeSbTe films for phase change RAM," Proceedings of International Symposium on VLSI Technology, pp.177-178, Kyoto, June 10-12, 2003.
  5. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phasechange mechanism of rewritable optical medium," Nat. Mater. 3, 703 (2004). [CrossRef]
  6. M. Wuttig and N. Yamada, "Phase-change materials for rewritable data storage," Nat. Mater. 6, 824-832 (2007). [CrossRef]
  7. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, "Resonant bonding in crystalline phase-change materials," Nat. Mater. 7, 653-658 (2008). [CrossRef]
  8. S. Nakamura, Y. Ueno, and K. Tajima, "Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach-Zehnder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001). [CrossRef]
  9. T. Akiyama, N. Georgiev, T. Mozume, H. Yoshida, A. V. Gopal, and O. Wada, "1.55 um picosecond all-optical switching by using absorption in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 14,495-497 (2002). [CrossRef]
  10. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am.  72, 1385-1392 (1982). [CrossRef]
  11. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  12. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite Difference Time DomainMethod. Boston (Artech House, Norwood, MA, 2nd edition, 2000).
  13. B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, "Switching power reduction in phase change memory cell using CVD Ge2Sb2Te5 and ultrathin TiO2 films," J. Electrochem. Soc. 156(1), H59-H63 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited