OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17000–17009

Bound and free waves in non-collinear second harmonic generation

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 17000-17009 (2009)
http://dx.doi.org/10.1364/OE.17.017000


View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the relationship between the bound and the free waves in the noncollinear SHG scheme, along with the vectorial conservation law for the different components arising when there are two pump beams impinging on the sample with two different incidence angles. The generated power is systematically investigated, by varying the polarization state of both fundamental beams, while absorption is included via the Herman and Hayden correction terms. The theoretical simulations, obtained for samples which are some coherence length thick show that the resulting polarization mapping is an useful tool to put in evidence the interference between bound and free waves, as well as the effect of absorption on the interference pattern.

© 2009 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 25, 2009
Revised Manuscript: August 4, 2009
Manuscript Accepted: August 4, 2009
Published: September 9, 2009

Citation
M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, "Bound and free waves in non-collinear second harmonic generation," Opt. Express 17, 17000-17009 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. D. Maker, R. W. Terhume, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962). [CrossRef]
  2. N. Bloembergen and P. S. Pershan, “Light wave at the boundary of nonlinear media,” Phys. Rev. 128(2), 606–622 (1962). [CrossRef]
  3. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970). [CrossRef]
  4. V. Figà, J. Luc, B. Kulyk, M. Baitoul, and B. Sahraoui, “Characterization and investigation of NLO properties of electrodeposited polythiophenes,” J. Eur. Opt. Soc. Rapid Publ. 4, 09016–09021 (2009). [CrossRef]
  5. V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M. Bloemer, J. W. Haus, O. G. Kosareva and V. P. Kandidov, “Role of phase matching in pulsed second harmonic generation: walk off and phase locked twin pulses in negative index media,” Phys. Rev. A 76, 033829/1–033829/12 (2007).
  6. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995). [CrossRef]
  7. J. Rams and J. M. Cabrera, “Second harmonic generation in the strong absorption regime,” J. Mod. Opt. 47, 1659–1669 (2000).
  8. M. Centini, V. Roppo, E. Fazio, F. Pettazzi, C. Sibilia, J. W. Haus, J. V. Foreman, N. Akozbek, M. J. Bloemer and M. Scalora, “Inhibition of linear absorption in opaque materials using phase-locked harmonic generation,” Phys. Rev. Lett. 101, 113905/1–113905/4 (2008).
  9. E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, “Complete spatial and temporal locking in phase-mismatched second-harmonic generation,” Opt. Express 17(5), 3141–3147 (2009). [CrossRef] [PubMed]
  10. R. E. Muenchausen, R. A. Keller, and N. S. Nogar, “Surface second-harmonic and sum-frequency generation using a noncollinear excitation geometry,” J. Opt. Soc. Am. B 4(2), 237–241 (1987). [CrossRef]
  11. P. Provencher, C. Y. Côté, and M. M. Denariez-Roberge, “Surface second-harmonic susceptibility determined by noncollinear reflected second-harmonic generation,” Can. J. Phys. 71, 66–69 (1993). [CrossRef]
  12. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán and B. S. Mendoza, “Single-Beam and Enhanced Two-Beam Second-Harmonic Generation from Silicon Nanocrystals by Use of Spatially Inhomogeneous Femtosecond Pulses,” Phys. Rev. Lett. 94, 047401/1–047401/4 (2005).
  13. S. Cattaneo and M. Kauranen, “Polarization-based identification of bulk contributions in surface nonlinear optics,” Phys. Rev. B 72, 033412/1–033412/4 (2005).
  14. S. Cattaneo and M. Kauranen, “Determination of second-order susceptibility components of thin films by two-beam second-harmonic generation,” Opt. Lett. 28(16), 1445–1447 (2003). [CrossRef] [PubMed]
  15. S. Cattaneo, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Advantages of polarized two-beam second-harmonic generation in precise characterization of thin films,” J. Chem. Phys. 120(19), 9245–9252 (2004). [CrossRef] [PubMed]
  16. J. Trull, C. Cojocaru, R. Fischer, S. M. Saltiel, K. Staliunas, R. Herrero, R. Vilaseca, D. N Neshev, W. Krolikowski, and Y. S. Kivshar, “Second-harmonic parametric scattering in ferroelectric crystals with disordered nonlinear domain structures,” Opt. Express 15(24), 15868–15877 (2007). [CrossRef] [PubMed]
  17. M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second harmonic generation,” Opt. Lett. 34(14), 2189–2191 (2009). [CrossRef] [PubMed]
  18. D. Faccio, V. Pruneri, and P. G. Kazansky, “Noncollinear Maker’s fringe measurements of second-order nonlinear optical layers,” Opt. Lett. 25(18), 1376–1378 (2000). [CrossRef]
  19. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1997).
  20. N. Bloembergen, “Conservation laws in nonlinear optics,” J. Opt. Soc. Am. B 70(12), 1429–1436 (1980). [CrossRef]
  21. F. J. Rodríguez, F. X. Wang, B. K. Canfield, S. Cattaneo, and M. Kauranen, “Multipolar tensor analysis of second-order nonlinear optical response of surface and bulk of glass,” Opt. Express 15(14), 8695–8701 (2007). [CrossRef] [PubMed]
  22. W. J. Choyke, and E. D. Palik, “Silicon Carbide (SiC)”, in Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic Orlando, Fla., 1985).
  23. T. K. Lim, M. Y. Jeong, C. Song, and D. C. Kim, “Absorption effect in the calculation of a second-order nonlinear coefficient from the data of a maker fringe experiment,” Appl. Opt. 37(13), 2723–2728 (1998). [CrossRef]
  24. R. Héliou, J. L. Brebner, and S. Roorda, “Role of implantation temperature on residual damage in ion-implanted 6H–SiC,” Semicond. Sci. Technol. 16(10), 836–843 (2001). [CrossRef]
  25. E. D. Palik, “Gallium Arsenide (GaAs)”, in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic Orlando, Fla., 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited