OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17016–17033

Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions

Axel Hagen, Dirk Grosenick, Rainer Macdonald, Herbert Rinneberg, Susen Burock, Peter Warnick, Alexander Poellinger, and Peter M. Schlag  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 17016-17033 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using scanning time-domain instrumentation we recorded fluorescence projection mammograms on few breast cancer patients prior, during and after infusion of indocyanine green (ICG), while monitoring arterial ICG concentration by transcutaneous pulse densitometry. Late-fluorescence mammograms recorded after ICG had been largely cleared from the blood by the liver, showed invasive carcinomas at high contrast over a rather homogeneous background, whereas benign lesions did not produce (focused) fluorescence contrast. During infusion, tissue concentration contrast and hence fluorescence contrast is determined by intravascular contributions, whereas late-fluorescence mammograms are dominated by contributions from protein-bound ICG extravasated into the interstitium, reflecting relative microvascular permeabilities of carcinomas and normal breast tissue. We simulated intravascular and extravascular contributions to ICG tissue concentration contrast within a two-compartment unidirectional pharmacokinetic model.

© 2009 OSA

OCIS Codes
(170.3830) Medical optics and biotechnology : Mammography
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(260.2510) Physical optics : Fluorescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 8, 2009
Revised Manuscript: August 20, 2009
Manuscript Accepted: August 24, 2009
Published: September 9, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Axel Hagen, Dirk Grosenick, Rainer Macdonald, Herbert Rinneberg, Susen Burock, Peter Warnick, Alexander Poellinger, and Peter M. Schlag, "Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions," Opt. Express 17, 17016-17033 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006). [PubMed]
  2. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007). [PubMed]
  3. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt. 12(5), 051903 (2007). [PubMed]
  4. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. U.S.A. 94(12), 6468–6473 (1997). [PubMed]
  5. L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),” Akt. Radiol. 8, 31–33 (1998).
  6. S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
  7. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42(1), 135–145 (2003). [PubMed]
  8. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005). [PubMed]
  9. D. Grosenick, K. Th. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, Ch. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005). [PubMed]
  10. S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology 243(2), 350–359 (2007). [PubMed]
  11. H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wübbeler, R. Macdonald, and P. Schlag, “Detection and characterization of breast tumours by time-domain scanning optical mammography,” Opto-Electronics Review 16(2), 147–162 (2008).
  12. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt. 11(3), 033001 (2006).
  13. C. Perlitz, K. Licha, F. D. Scholle, B. Ebert, M. Bahner, P. Hauff, K. T. Moesta, and M. Schirner, “Comparison of two tricarbocyanine-based dyes for fluorescence optical imaging,” J. Fluoresc. 15(3), 443–454 (2005). [PubMed]
  14. R. Ziegler, Modeling photon transport and reconstruction of optical properties for performance assessment of laser und fluorescence mammographs and analysis of clinical data, Dissertation, Department of Physics, Free University of Berlin, Germany, 2008, ( http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000005928 ).
  15. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000). [PubMed]
  16. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003). [PubMed]
  17. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007). [PubMed]
  18. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000). [PubMed]
  19. A. L. Baert, K. Sartor, A. Jackson, D. L. Buckley, and G. J. M. Parker, eds., Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology, Springer, Berlin, Heidelberg, Germany (2005).
  20. H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, “Openings between defective endothelial cells explain tumor vessel leakiness,” Am. J. Pathol. 156(4), 1363–1380 (2000). [PubMed]
  21. D. Feng, J. A. Nagy, H. F. Dvorak, and A. M. Dvorak, “Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals,” Microsc. Res. Tech. 57(5), 289–326 (2002). [PubMed]
  22. D. K. F. Meijer, B. Weert, and G. A. Vermeer, “Pharmacokinetics of biliary excretion in man. VI. Indocyanine green,” Eur. J. Clin. Pharmacol. 35(3), 295–303 (1988). [PubMed]
  23. P. Ott, L. Bass, and S. Keiding, “The kinetics of continuously infused indocyanine green in the pig,” J. Pharmacokinet. Biopharm. 24(1), 19–44 (1996). [PubMed]
  24. S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16(20), 16064–16078 (2008). [PubMed]
  25. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. Th. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
  26. A. Hagen, O. Steinkellner, D. Grosenick, M. Möller, R. Ziegler, T. Nielsen, K. Lauritsen, R. Macdonald, and H. Rinneberg, “Development of a multi-channel time-domain fluorescence mammograph,” Proc. SPIE 6434, 64340Z (2007).
  27. M. Möller, H. Wabnitz, A. Kummrow, D. Grosenick, A. Liebert, B. Wassermann, R. Macdonald, and H. Rinneberg, “A four-wavelength multi-channel scanning time-resolved optical mammograph,” Proc. SPIE 5138, 290–297 (2003).
  28. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42(16), 2940–2950 (2003). [PubMed]
  29. G. Brix, F. Kiessling, R. Lucht, S. Darai, K. Wasser, S. Delorme, and J. Griebel, “Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series,” Magn. Reson. Med. 52(2), 420–429 (2004). [PubMed]
  30. E. E. Uzgiris, “Tumor microvasculature: endothelial leakiness and endothelial pore size distribution in a breast cancer model,” Breast Cancer: Basic and Clinical Research 1, 83–90 (2008).
  31. H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171(4), 941–949 (1998). [PubMed]
  32. C. C. Michel and F. E. Curry, “Microvascular permeability,” Physiol. Rev. 79(3), 703–761 (1999). [PubMed]
  33. M. R. Dreher, W. Liu, C. R. Michelich, M. W. Dewhirst, F. Yuan, and A. Chilkoti, “Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers,” J. Natl. Cancer Inst. 98(5), 335–344 (2006). [PubMed]
  34. H. E. Daldrup-Link and R. C. Brasch, “Macromolecular contrast agents for MR mammography: current status,” Eur. Radiol. 13(2), 354–365 (2003). [PubMed]
  35. P. Ott and R. A. Weisiger, “Nontraditional effects of protein binding and hematocrit on uptake of indocyanine green by perfused rat liver,” Am. J. Physiol. 273(1 Pt 1), G227–G238 (1997). [PubMed]
  36. S. Keiding, P. Ott, and L. Bass, “Enhancement of unbound clearance of ICG by plasma proteins, demonstrated in human subjects and interpreted without assumption of facilitating structures,” J. Hepatol. 19(3), 327–344 (1993). [PubMed]
  37. K. Sauda, T. Imasaka, and N. Ishibashi, “Determination of protein in human serum by high-performance liquid chromatography with semiconductor laser fluorometric detection,” Anal. Chem. 58(13), 2649–2653 (1986). [PubMed]
  38. S. Yoneya, T. Saito, Y. Komatsu, I. Koyama, K. Takahashi, and J. Duvoll-Young, “Binding properties of indocyanine green in human blood,” Invest. Ophthalmol. Vis. Sci. 39(7), 1286–1290 (1998). [PubMed]
  39. Z. M. Bhujwalla, D. Artemov, K. Natarajan, E. Ackerstaff, and M. Solaiyappan, “Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts,” Neoplasia 3(2), 143–153 (2001). [PubMed]
  40. B. Alacam, B. Yazici, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol. 53(4), 837–859 (2008). [PubMed]
  41. Y. Matsumura and H. Maeda, “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986). [PubMed]
  42. U. Schilling, E. A. Friedrich, H. Sinn, H. H. Schrenk, J. H. Clorius, and W. Maier-Borst, “Design of compounds having enhanced tumor uptake, using serum albumin as a carrier – Part II. In vivo studies,” Nucl. Med. Biol. 19(6), 685–695 (1992).
  43. R. Duncan, “Polymer conjugates as anticancer nanomedicines,” Nat. Rev. Cancer 6(9), 688–701 (2006). [PubMed]
  44. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72(1), 94–102 (2000). [PubMed]
  45. E. Brown, J. Hopper, J. L. Hodges, B. Bradley, R. Wennesland, and H. Yamauchi, “Red cell, plasma, and blood volume in the healthy women measured by radiochromium cell-labeling and hematocrit,” J. Clin. Invest. 41(12), 2182–2190 (1962). [PubMed]
  46. C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res. 52(6), 1592–1597 (1992). [PubMed]
  47. P. Vaupel and M. Höckel, “Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance,” Int. J. Oncol. 17(5), 869–879 (2000) (review). [PubMed]
  48. D. Grosenick, H. Wabnitz, K. Th. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005). [PubMed]
  49. P. S. Tofts and B. A. Berkowitz, “Measurement of capillary permeability from the Gd enhancement curve: a comparison of bolus and constant infusion injection methods,” Magn. Reson. Imaging 12(1), 81–91 (1994). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited