OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17044–17051

Raman Microscopy based on Doubly-Resonant Four-Wave Mixing (DR-FWM)

Tyler Weeks, Sebastian Wachsmann-Hogiu, and Thomas Huser  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 17044-17051 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Doubly-resonant four-wave mixing (DR-FWM) is a nondegenerate four-wave mixing process in which four photons interact to coherently probe two distinct Raman resonances. We demonstrate DR-FWM microscopy as a label-free and nondestructive molecular imaging modality with high chemical specificity on the submicron scale by imaging alkyne-substituted oleic acid in both aqueous and lipid-rich environments. DR-FWM microscopy is contrasted to coherent anti-Stokes Raman scattering (CARS) microscopy and it is shown that the coherent addition of two simultaneously probed Raman resonances leads to a significant increase in signal without increasing the non-resonant background. Thus, this scheme enables the detection of weak Raman signals through amplification by a strong Raman resonance, potentially increasing the overall detection sensitivity beyond what has been demonstrated by either CARS or stimulated Raman scattering (SRS).

© 2009 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: August 5, 2009
Revised Manuscript: September 1, 2009
Manuscript Accepted: September 2, 2009
Published: September 9, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Tyler Weeks, Sebastian Wachsmann-Hogiu, and Thomas Huser, "Raman Microscopy based on Doubly-Resonant Four-Wave Mixing (DR-FWM)," Opt. Express 17, 17044-17051 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  2. M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2157–2170 (2007). [CrossRef]
  3. J. Chan, S. Fore, S. Wachsman-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev. 2(5), 325–349 (2008). [CrossRef]
  4. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  5. S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy--from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009). [CrossRef] [PubMed]
  6. C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Ann. Rev. Anal. Chem. 1(1), 883–909 (2008). [CrossRef]
  7. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006). [CrossRef] [PubMed]
  8. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007). [CrossRef] [PubMed]
  9. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006). [CrossRef] [PubMed]
  10. H. Lotem, R. T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14(5), 1748–1755 (1976). [CrossRef]
  11. S. A. J. Druet, B. Attal, T. K. Gustafson, and J.-P. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering,” Phys. Rev. A 18(4), 1529–1557 (1978). [CrossRef]
  12. Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32(22), 3370–3372 (2007). [CrossRef] [PubMed]
  13. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002). [CrossRef]
  14. I. W. Schie, T. Weeks, G. P. McNerney, S. Fore, J. K. Sampson, S. Wachsmann-Hogiu, J. C. Rutledge, and T. Huser, “Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting,” Opt. Express 16(3), 2168–2175 (2008). [CrossRef] [PubMed]
  15. R. Lynch, S. Kramer, H. Lotem, and N. Bloembergen, “Double Resonance Interference in Third-Order Light Mixing,” Opt. Commun. 16(3), 372–375 (1976). [CrossRef]
  16. S. Saha and R. Hellwarth, “Raman-Induced Phase Conjugation Spectroscopy,” Phys. Rev. A 27(2), 919–922 (1983). [CrossRef]
  17. H. Fei, Y. Zhang, L. Han, F. Zhao, and Z. Wei, “Raman-enhanced nondegenerate four-wave mixing,” Appl. Phys. B 52(6), 395–399 (1991). [CrossRef]
  18. W. M. Tolles, J. W. Nibler, J. R. Mcdonald, and A. B. Harvey, “Review of Theory and Application of Coherent Anti-Stokes Raman-Spectroscopy (CARS),” Appl. Spectrosc. 31(4), 253–271 (1977). [CrossRef]
  19. G. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited