OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17060–17069

Planar photonic crystal microspectrometers in silicon-nitride for the visible range

Babak Momeni, Ehsan Shah Hosseini, and Ali Adibi  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 17060-17069 (2009)
http://dx.doi.org/10.1364/OE.17.017060


View Full Text Article

Enhanced HTML    Acrobat PDF (553 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the feasibility of forming a compact integrated photonic spectrometer for operation in the visible wavelength range using the dispersive properties of a planar photonic crystal structure fabricated in silicon nitride. High wavelength resolution and compact device sizes in these spectrometers are enabled by combining superprism effect, negative diffraction effect, and negative refraction effect in a 45° rotated square lattice photonic crystal. Our experimental demonstration shows 1.2 nm wavelength resolution in a 70 µm by 130 µm photonic crystal structure with better performance than alternative structures for on-chip spectroscopy, confirming the unique capability of the proposed approach to realize compact integrated spectrometers.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: May 26, 2009
Revised Manuscript: July 14, 2009
Manuscript Accepted: July 29, 2009
Published: September 10, 2009

Citation
Babak Momeni, Ehsan Shah Hosseini, and Ali Adibi, "Planar photonic crystal microspectrometers in silicon-nitride for the visible range," Opt. Express 17, 17060-17069 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17060


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005). [CrossRef]
  2. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006). [CrossRef]
  3. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006). [CrossRef]
  4. J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007). [CrossRef] [PubMed]
  5. K. Zinoviev, L. G. Carrascosa, J. Sanchez del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol. 2008, 383927 (2008).
  6. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009). [CrossRef]
  7. R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004). [CrossRef]
  8. D. S. Goldman, P. L. White, and N. C. Anheier, “Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,” Appl. Opt. 29(31), 4583–4589 (1990). [CrossRef] [PubMed]
  9. D. Sander, M.-O. Dücker, O. Blume, and J. Muller, “An optical microspectrometer in SiON-slab-waveguides,” Proc. SPIE 2686, 100–107 (1996). [CrossRef]
  10. Y. Maruyama, K. Sawada, H. Takao, and M. Ishida, “A novel filterless fluorescence detection sensor for DNA analysis,” IEEE Trans. Electron. Dev. 53(3), 553–558 (2006). [CrossRef]
  11. D. A. Zauner, A. M. Jorgensen, T. A. Anhoj, and J. Hübner, “Concave reflective SU-8 photoresist gratings for flat-field integrated spectrometers,” Appl. Opt. 45(23), 5877–5880 (2006). [CrossRef] [PubMed]
  12. Y. Komai, H. Nagano, K. Okamoto, and K. Kodate, “Compact spectroscopic sensor using a visible arrayed waveguide grating,” Jpn. J. Appl. Phys. 45(No. 8B), 6742–6749 (2006). [CrossRef]
  13. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide Echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004). [CrossRef]
  14. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002). [CrossRef]
  15. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17(11), 2032–2038 (1999). [CrossRef]
  16. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14(6), 2413–2422 (2006). [CrossRef] [PubMed]
  17. B. Momeni, M. Chamanzar, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008). [CrossRef] [PubMed]
  18. B. Momeni and A. Adibi, “An approximate effective index model for efficient analysis and control of beam propagation effects in photonic crystals,” J. Lightwave Technol. 23(3), 1522–1532 (2005). [CrossRef]
  19. B. Momeni and A. Adibi, “Preconditioned superprism-based photonic crystal demultiplexers: analysis and design,” Appl. Opt. 45(33), 8466–8476 (2006). [CrossRef] [PubMed]
  20. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009). [CrossRef]
  21. J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, “Visible-wavelength super-refraction in photonic crystal superprisms,” Appl. Phys. Lett. 85(3), 354–356 (2004). [CrossRef]
  22. B. Momeni, Q. Li, and A. Adibi, “Ultra-compact implementation of planar superprism-based demultiplexers in silicon,” in preparation.
  23. T. Baba and D. Ohsaki, “Interfaces of photonic crystals for high efficiency light transmission,” Jpn. J. Appl. Phys. 40(Part 1, No. 10), 5920–5924 (2001). [CrossRef]
  24. B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87(17), 171104 (2005). [CrossRef]
  25. K. Okamoto, Fundamentals of Optical Waveguides, San Diego: Academic Press, 2000.
  26. P. E. Barclay, K. Srinivasan, O. Painter, T. J. Watson, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006). [CrossRef]
  27. B. Momeni, M. Askari, E. S. Hosseini, A. Atabaki, and A. Adibi, “An on-chip silicon grating spectrometer using a photonic crystal reflector,” submitted for publication.
  28. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited