OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17136–17143

Light focusing by the unique dielectric nano-waveguide array

Lihua Zhao, Yudong Li, Jiwei Qi, Jingjun Xu, and Qian Sun  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 17136-17143 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The light focusing by using dielectric nano-waveguides array with its length in micron is investigated via the finite-difference time domain (FDTD) method. Simulated results show that the focal length depends on the length and the total width of the arrays and can be altered from tens of micron to wavelength order. Both TM and TE mode incident light can be focused by the array. The wavelength-order focal length is achieved by employing the dielectric nano-waveguide array with variant separations. The unique focusing behavior is contributed to the radiation mode with longer decay length and the large evanescent field which appears in the nano-waveguide array. We believe this simulation results can be a promising guidance for the experiments.

© 2009 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.3990) Optical devices : Micro-optical devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Optical Devices

Original Manuscript: June 10, 2009
Revised Manuscript: August 8, 2009
Manuscript Accepted: August 9, 2009
Published: September 11, 2009

Lihua Zhao, Yudong Li, Jiwei Qi, Jingjun Xu, and Qian Sun, "Light focusing by the unique dielectric nano-waveguide array," Opt. Express 17, 17136-17143 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004). [CrossRef]
  2. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  3. X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31(9), 1322–1324 (2006). [CrossRef] [PubMed]
  4. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15(15), 9541–9546 (2007). [CrossRef] [PubMed]
  5. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009). [CrossRef]
  6. S. Somekh, E. Gamire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett. 22(1), 46–47 (1973). [CrossRef]
  7. N. Kishi and E. Yamshita, “A Simple Coupled-Mode Analysis Method for Multiple-Core Optical Fiber and Coupled Dielectric Waveguide Structures,” IEEE Trans. Microw. Theory Tech. 36(12), 1861–1868 (1988). [CrossRef]
  8. Y.-C. Meng, Q.-Z. Guo, W.-H. Tan, and Z.-M. Huang, “Analytical solutions of coupled-mode equations for multiwaveguide systems, obtained by use of Chebyshev and generalized Chebyshev polynomials,” J. Opt. Soc. Am. A 21(8), 1518–1528 (2004). [CrossRef]
  9. G. Josten, H. P. Weber, and W. Luethy, “Lensless focusing with an array of phase-adjusted optical fibers,” Appl. Opt. 28(23), 5133–5137 (1989). [CrossRef] [PubMed]
  10. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13(9), 794–796 (1988). [CrossRef] [PubMed]
  11. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  12. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005). [CrossRef] [PubMed]
  13. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001). [CrossRef] [PubMed]
  14. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2006). [CrossRef]
  15. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009). [CrossRef] [PubMed]
  16. A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, 1983).
  17. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed (Artech House, 2000).
  18. J.-P. Berenger, “Perfectly Matched Layer for the FDTD Solution of Wave-Structure Interaction Problems,” IEEE Trans. Antenn. Propag. 44(1), 110–117 (1996). [CrossRef]
  19. G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15(21), 13805–13816 (2007). [CrossRef] [PubMed]
  20. P. Klocek, Handbook of infrared optical materials (Marcel Dekker, 1991).
  21. P. Ruffieux, T. Scharf, H. P. Herzig, R. Völkel, and K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14(11), 4687–4694 (2006). [CrossRef] [PubMed]
  22. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  23. J. S. Wei, “Power Transfer in a Large Parallel Array of Coupled Dielectric Waveguides,” IEEE Trans. Microw. Theory Tech. 55(11), 2345–2353 (2007). [CrossRef]
  24. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited