OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17156–17163

Optimal generation of indistinguishable photons from non-identical artificial molecules

E. Cancellieri, F. Troiani, and G. Goldoni  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 17156-17163 (2009)
http://dx.doi.org/10.1364/OE.17.017156


View Full Text Article

Enhanced HTML    Acrobat PDF (129 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show theoretically that nearly indistinguishable photons can be generated with non-identical semiconductor-based sources. The use of virtual Raman transitions and the optimization of the external driving fields increases the tolerance to spectral inhomogeneity to the meV energy range. A trade-off emerges between photon indistinguishability and efficiency in the photon-generation process. Linear (quadratic) dependence of the coincidence probability within the Hong-Ou-Mandel setup is found with respect to the dephasing (relaxation) rate in the semiconductor sources.

© 2009 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3948) Lasers and laser optics : Microcavity devices
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 17, 2009
Revised Manuscript: August 8, 2009
Manuscript Accepted: August 13, 2009
Published: September 11, 2009

Citation
E. Cancellieri, F. Troiani, and G. Goldoni, "Optimal generation of indistinguishable photons from non-identical artificial molecules," Opt. Express 17, 17156-17163 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Cirac, Zoller , Kimble, and Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network", Phys. Rev. Lett. 78, 3221 (1997).
  2. Kok, Munro , Nemoto, Ralph , Dowling, and Milburn, "Linear optical quantum computing with photonic qubits", Rev. Mod. Phys. 79, 135 (2007).
  3. Keller, Lange , Hayasaka, Lange , and Walther, "Continuous generation of single photons with controlled waveform in an ion-trap cavity system", Nature 431, 1075 (2004). [PubMed]
  4. McKeever, Boca , Boozer, Miller , Miller, Buck , Kuzmich, and Kimble, "Deterministic Generation of Single Photon from One Atom Trapped in a Cavity", Science 303, 1992 (2004). [PubMed]
  5. Darquié, Jones, Dingjan, Beugnon, Bergamini, Sortais, Messin, Browaeys, and Grangier, "Controlled Single- Photon Emission froma a Single Trapped Two-Level Atom", Science 309, 454 (2005). [PubMed]
  6. Beugnon, Jones , Dingjan, Darqui’e, Messin, Browaeys, and Grangier, "Quantum interference between two single photons emitted by independently trapped atoms", Nature 440, 779 (2006). [PubMed]
  7. Martini, Giuseppe , and Marrocco, "Single-Mode Generation of Quantum Photon States by Excited Single Molecules in a Microcavity Trap", Phys. Rev. Lett. 76, 900 (1996). [PubMed]
  8. Brunel, Lounis , Tamarat, and Orrit, "Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence", Phys. Rev. Lett. 83, 2722 (1999).
  9. Lounis and Moerner, "Single photons on demand from a single molecule at room temperature", Nature 407, 491 (2000). [PubMed]
  10. Kurtsiefer, Mayer , Zarda, and Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000). [PubMed]
  11. Michler, Mason , Carson, Strouse , Buratto, and Imamoglu, "Quantum correlation among photons froma a single quantum dot at room temperature", Nature 406, 968 (2000). [PubMed]
  12. Moreau, Robert , Manin, Thierry-Mieg , Gerard, and Abram, "Quantum Cascade of Photons in Semiconductor Quantum Dots", Phys. Rev. Lett. 87, 183601 (2001).
  13. Zwiller, Blom , Jonsson, Panev , Jeppesen, Tsegaye , Goobar, Pistol , Samuelson, and Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", Appl. Phys. Lett. 78, 2476 (2001).
  14. Santori, Pelton , Solomon, Dale , and Yamamoto, "Triggered Single Photons from a Quantum Dot", Phys. Rev. Lett. 86, 1502 (2001). [PubMed]
  15. Santori, Fattal , Vuckovic, Solomon , and Yamamoto, "Indistinguishable photons from a single-photon device", Nature 419, 594 (2002). [PubMed]
  16. Zrenner, "A close look on single quantum dots", J. Chem. Phys. 112, 7790 (2000).
  17. Badolato, Hennessy , Atature, Dreyser , Hu, Petroff , and Imamoglu, "Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes", Science 308, 1158 (2005). [PubMed]
  18. Scully and Zubairy, in Quantum optics (Cambridge University Press, Cambridge, 1997).
  19. Kiraz, Atature , and Imamoglu, "Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing", Phys. Rev. A 69, 32305 (2004).
  20. Troiani, Perea , and Tejedor, "Analysis of the photon indistinguishability in incoherently excited quantum dots", Phys. Rev. B 73, 035316 (2006).
  21. Sheng and Leburton, "Spontaneous localization in InAs/GaAs self-assembled quantum-dot molecules", Appl. Phys. Lett. 81, 4449 (2002).
  22. Bester, Shumway , and Zunger, "Theory of Excitonic Spectra and Entenglement Engineering in Dot Molecules", Phys. Rev. Lett. 93, 47401 (2004).
  23. The first excited charged-exciton state 4 has to be included, for its energy separation from 3 is typically of a few meV [29], comparable to the detunings δL and δc.
  24. Hong, Ou , and Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett. 59, 2044 (1987). [PubMed]
  25. Michalewicz Genetic Algorithms + Data Structures = Evolutionary Programming (Springer-Verlag, Berlin, 1992).
  26. For simplicity, we keep ωA 34 =ωB 34 = 5meV and ωA 12 =ωB 12 = 25meV. Possible differences between the bondingantibonding splittings of the two AMs can be trivially compensated by adjusting ωA L ?ωB L.
  27. Zanardi and Rossi, "Quantum Information in Semiconductors: Noiseless Encoding in a Quantum-Dot Array", Phys. Rev. Lett. 81, 4752 (1998).
  28. Bertoni, Rontani , Goldoni, Troiani , and Molinari, "Field-controlled suppression of photon-induced transitions in coupled quantum dots", Appl. Phys. Lett. 85, 4729 (2004).
  29. Krenner, Clark , Nakaoka, Bichler , Scheurer, Abstreiter , and Finley, "Optically Probing Spin and Charge Interactions in a Tunable Artificial Molecule", Phys. Rev. Lett. 97, 076403 (2006). [PubMed]
  30. Fern’ee, Rubinsztein-Dunlop , and Milburn, "Improving single-photon sources with Stark tuning", Phys. Rev. A 75, 043815 (2007).
  31. Troiani, Wilson-Rae , and Tejedor, "All-optical nondemolition measurement of single hole spin in a quantum-dot molecule", Appl. Phys. Lett. 90, 144103 (2007).
  32. Flindt, Sorensen , Lukin, and Taylor, "Spin-Photon Entangling Diode", Phys. Rev. Lett. 98, 240501 (2007). [PubMed]
  33. Cortez, Krebs ,Laurent, Senes , Marie, Vosisin , Ferreira, Bastard , Gerard, and Amand, "Optically Driven Spin Memory in n-Doped InAs-GaAs Quantum Dots", Phys. Rev. Lett. 89, 207401 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited