OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 1033–1041

Integrated optical source of polarization entangled photons at 1310 nm

A. Martin, V. Cristofori, P. Aboussouan, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 1033-1041 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the realization of a new polarization entangled photon-pair source based on a titanium-indiffused waveguide integrated on periodically poled lithium niobate pumped by a CW laser at 655nm. The paired photons are emitted at the telecom wavelength of 1310nm within a bandwidth of 0.7nm. The quantum properties of the pairs are measured using a two-photon coalescence experiment showing a visibility of 85%. The evaluated source brightness, on the order of 105 pairs s−1GHz−1mW−1, associated with its compactness and reliability, demonstrates the source’s high potential for long-distance quantum communication.

© 2009 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: September 2, 2008
Revised Manuscript: October 31, 2008
Manuscript Accepted: November 3, 2008
Published: January 15, 2009

A. Martin, V. Cristofori, P. Aboussouan, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, "Integrated optical source of polarization entangled photons at 1310 nm," Opt. Express 17, 1033-1041 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Weihs and W. Tittel, "Photonic entanglement for fundamental tests and quantum communication," Quantum Inf. Comput. 1, 3-56 (2001).
  2. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969). [CrossRef]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  4. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature (London) 421, 509-513 (2003), and references therein. [CrossRef]
  5. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, "Entangling independent photons by time measurement," Nat. Phys. (London) 3, 692-695 (2007), and references therein. [CrossRef]
  6. P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  7. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999). [CrossRef]
  8. M. Halder, A. Beveratos, R.T. Thew, C. Jorel, H. Zbinden, N. Gisin, "High coherence photon pair source for quantum communication," New J. Phys. 10, 023027 (2008), and references therein. [CrossRef]
  9. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden and N. Gisin, "Long distance quantum teleportation in a quantum relay configuration," Phys. Rev. Lett. 92, 047904 (2004). [CrossRef] [PubMed]
  10. T. Suhara, H. Okabe, M. Fujimura, "Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device," IEEE Photon. Technol. Lett. 19, 1093-1095 (2007). [CrossRef]
  11. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide," Opt. Express 15, 12769-12776 (2007), >http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-20-12769. [CrossRef] [PubMed]
  12. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference", Phys. Rev. Lett.  59, 2044-2047 (1987). [CrossRef] [PubMed]
  13. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M.P. De Micheli, D.B. Ostrowsky and N. Gisin, "Highly efficient photon-pair source using a Periodically Poled Lithium Niobate waveguide," Electron. Lett. 37, 26-28 (2001). [CrossRef]
  14. W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163 (1999). [CrossRef]
  15. A. Zeilinger, H. J. Bernstein, and M. A. Horne, "Information transfer with two-state two-particle quantum systems," J. Mod. Opt. 41, 2375-2384 (1994). [CrossRef]
  16. H. Kim, J. Ko, and T. Kim, "Two-particle interference experiment with frequency-entangled photon pairs," J. Opt. Soc. Am. B 20, 760-763 (2003). [CrossRef]
  17. A. Eckstein and C. Silberhorn, "Broadband frequency mode entanglement in waveguided PDC," arxiv 0806.1961 (2008), http://arxiv.org/abs/0806.1961.
  18. R. Okamoto, S. Takeuchi, and K. Sasaki, "Tailoring two-photon interference with phase dispersion," Phys. Rev. A 74, 011801(R) (2006).interference," Phys. Rev. Lett. 59, 2044-2047 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited