OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 1055–1063

Sagnac secret sharing over telecom fiber networks

Jan Bogdanski, Johan Ahrens, and Mohamed Bourennane  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 1055-1063 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first Sagnac quantum secret sharing (in three-and four-party implementations) over 1550 nm single mode fiber (SMF) networks, using a single qubit protocol with phase encoding. Our secret sharing experiment has been based on a single qubit protocol, which has opened the door to practical secret sharing implementation over fiber telecom channels and in free-space. The previous quantum secret sharing proposals were based on multiparticle entangled states, difficult in the practical implementation and not scalable. Our experimental data in the three-party implementation show stable (in regards to birefringence drift) quantum secret sharing transmissions at the total Sagnac transmission loop distances of 55-75 km with the quantum bit error rates (QBER) of 2.3-2.4% for the mean photon number μ = 0.1 and 1.7-2.1% for μ = 0.3. In the four-party case we have achieved quantum secret sharing transmissions at the total Sagnac transmission loop distances of 45-55 km with the quantum bit error rates (QBER) of 3.0-3.7% for the mean photon number μ = 0.1 and 1.8-3.0% for μ = 0.3. The stability of quantum transmission has been achieved thanks to our new concept for compensation of SMF birefringence effects in Sagnac, based on a polarization control system and a polarization insensitive phase modulator. The measurement results have showed feasibility of quantum secret sharing over telecom fiber networks in Sagnac configuration, using standard fiber telecom components.

© 2009 Optical Society of America

OCIS Codes
(040.5570) Detectors : Quantum detectors
(060.4080) Fiber optics and optical communications : Modulation
(040.1345) Detectors : Avalanche photodiodes (APDs)
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Quantum Optics

Original Manuscript: October 1, 2008
Revised Manuscript: November 21, 2008
Manuscript Accepted: November 28, 2008
Published: January 15, 2009

Jan Bogdanski, Johan Ahrens, and Mohamed Bourennane, "Sagnac secret sharing over telecom fiber networks," Opt. Express 17, 1055-1063 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Schneier, Applied Cryptography (John Wiley & Sons, Inc. 1996).
  2. M. Hillery, V. Buzek, and A. Berthiaume, "Quantum secret sharing," Phys. Rev. A 59, 1829-1834 (1999). [CrossRef]
  3. R. Cleve, D. Gottesmann, and H.-K. Lo, "How to Share a Quantum Secret," Phys. Rev. Lett. 83, 648-651 (1999). [CrossRef]
  4. W. Tittel, H. Zbinden, and N. Gisin, "Experimental demonstration of quantum secret sharing," Phys. Rev. A 63, 042301-042306 (2001). [CrossRef]
  5. Y. A. Chen, A. N. Zhang, Z. Zhao, X. Q. Zhou, C. Y. Lu, C. Z. Peng, T. Yang, and J. W. Pan, "Experimental quantum secret sharing and third-man quantum cryptography," Phys. Rev. Lett.  95, 200502.1-200502.4 (2005). [CrossRef]
  6. S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, "Experimental demonstration of four-party quantum secret sharing," Phys. Rev. Lett.  98, 020503.1-020503.4 (2007). [CrossRef]
  7. C. Schmid, P. Trojek, H. Weinfurter, M. Bourennane, M. Zukowski, and C. Kurtsiefer, "Experimental single qubit quantum secret sharing," Phys. Rev. Lett.  95, 230505.1-230505.4 (2005). [CrossRef]
  8. C. Schmid, P. Trojek, M . Bourennane, C . Kurtsiefer, M . Zukowski, and H . Weinfurter, "Comment on experimental single qubit quantum secret sharing," Phys. Rev. Lett.  98, 028901.1 (2007).
  9. A. Kuzin, H. Cerecedo Nez, and N. Korneev, "Alignment of a birefringent fiber Sagnac interferometer by fiber twist," Opt. Commun. 160, 37-41 (1999). [CrossRef]
  10. B. Ibarra-Escamilla, E. A. Kuzin, O. Pottiez, J. W. Haus, F. Gutierrez-Zainos, R. Grajales-Coutin, and P. Zaca-Moran, "Fiber optical loop mirror with a symmetrical coupler nand a quarter-wave retarder plate in the loop," Opt. Commun. 242, 191-197 (2004). [CrossRef]
  11. D. B. Mortimore, "Fiber loop reflectors," Opt. Commun. 6, 1217-1224 (1988).
  12. C. Tsao, Optical fibre waveguide analysis, (Oxford Science Publ. 1992).
  13. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zibiden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys.  4,41.1-41.8 (2002). [CrossRef]
  14. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  15. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, "Fast and user-friendly quantum key distribution," J. Mod. Opt. 47, 517-531 (2000).
  16. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007) [CrossRef]
  17. E. Udd, "Sensing and instrumentation applications of the Sagnac fiber optic interferometer," Proc. SPIE 2341, 52-59 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited