OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 1078–1092

Analysis of propagation characteristics in the surface plasmon polariton gap waveguides by method of lines

Kazuo Tanaka, Tran Trong Minh, and Masahiro Tanaka  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 1078-1092 (2009)
http://dx.doi.org/10.1364/OE.17.001078


View Full Text Article

Enhanced HTML    Acrobat PDF (801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical study of the complex propagation constants of a surface plasmon polariton gap waveguide (SPGW) that was nanometric in size is performed by the method of lines (MoL). The validity of the code based on the MoL is examined by comparing the present results with those calculated using a volume integral equation, which is a completely different numerical technique from the MoL. The dependences of the complex propagation constants on the sizes of the SPGWs are investigated in detail and the fundamental propagation characteristics of SPGWs are revealed. Three kinds of SPGW structures (slab-slab, slab-plate and staggered slab-slab) are examined with a view to reducing the attenuation constants and the spot size to nanometric size. It is found that the nanometric field confinement can be controlled by using the staggered slab-slab structure of SPGW without a large change in the propagation constants.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 14, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: January 12, 2009
Published: January 15, 2009

Citation
Kazuo Tanaka, Tran Trong Minh, and Masahiro Tanaka, "Analysis of propagation characteristics in the surface plasmon polariton gap waveguides by method of lines," Opt. Express 17, 1078-1092 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-1078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics, (Chapman & Hall, 2008).
  2. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier Science Ltd. 2007).
  3. M. Ohtsu and H. Hori,Near-Field Nano-Optics: from basic Principles to Nano-Fabrication and Nano-Photonics, (Plenum Pub. Corp., 1999).
  4. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A route to nanoscale optical devices," Adv. Mater. 13, 1501-1505 (2001). [CrossRef]
  6. E. Feigenbaum and M. Orenstein, "Modeling of Complementary (Void) Plasmon Waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007). [CrossRef]
  7. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, and M. Fukui, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  8. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323 (2004). [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channeling surface plasmons," Appl. Phys. A 89, 225-231 (2007). [CrossRef]
  10. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  11. K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express 13, 256-266 (2005). [CrossRef]
  12. G.  Veronis and S.  Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett.  87, 131102 (2005). [CrossRef] [PubMed]
  13. D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006). [CrossRef]
  14. B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992-1994 (2004). [CrossRef]
  15. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005). [CrossRef] [PubMed]
  16. S. H. Chang, T. C. Chiu, and C. Tai, "Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides," Opt. Express 15, 1755-1761 (2007). [CrossRef] [PubMed]
  17. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006). [CrossRef] [PubMed]
  18. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005). [CrossRef] [PubMed]
  19. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005). [CrossRef]
  20. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006). [CrossRef]
  21. Y. Satuby and M. Orenstein, "Surface-plasmon-polariton modes in deep metallic trenches- measurement and analysis," Opt. Express 15, 4247-4252 (2007). [CrossRef] [PubMed]
  22. G.  Veronis and S.  Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007). [CrossRef] [PubMed]
  23. G. B. Hoffman and R. M. Reano, "Vertical coupling between gap plasmon waveguides," Opt. Express,  16, 12677-12687 (2008). [CrossRef]
  24. S. I. Bozhevolnyi and J. Jung, "Scaling for gap plasmon based waveguides," Opt. Express 16, 2676-2684 (2008). [CrossRef] [PubMed]
  25. K. Tanaka, M. Tanaka, K. Katayama, and D. Miyahara, "Propagation constants of guided waves in surface plasmon polariton gap waveguides excited through an I-shaped aperture," C. R. Phys. 9, 16- 23 (2008). [CrossRef] [PubMed]
  26. P. Berini, "Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics," Opt. Express 7, 329-335 (2000). [CrossRef]
  27. R. Pregla and W. Pascher "The Method of Lines," in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures T. Itoh, Ed., (New York, Wiley, 1989). [CrossRef] [PubMed]
  28. U. Rogge and R. Pregla, "Method of lines for the analysis of dielectric waveguides," J. Lightwave Technol. 11, 2015-2020 (1993).
  29. T. T. Minh, K. Tanaka, and M. Tanaka, "Complex propagation constants of surface plasmon polariton rectangular waveguide by method of lines," Opt. Express 16, 9378-9390 (2008). [CrossRef]
  30. DavidW.  Lynch, and W. R. Hunter, Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic, New York, 1985). [CrossRef] [PubMed]
  31. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
  32. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited