OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 1093–1106

Photon entanglement signatures in difference-frequency-generation.

Oleksiy Roslyak and Shaul Mukamel  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 1093-1106 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In response to quantum optical fields, pairs of molecules generate coherent nonlinear spectroscopy signals. Homodyne signals are given by sums over terms each being a product of Liouville space pathways of the pair of molecules times the corresponding optical field correlation function. For classical fields all field correlation functions may be factorized and become identical products of field amplitudes. The signal is then given by the absolute square of a susceptibility which in turn is a sum over pathways of a single molecule. The molecular pathways of different molecules in the pair are uncorrelated in this case (each path of a given molecule can be accompanied by any path of the other). However, entangled photons create an entanglement between the molecular pathways. We use the superoperator nonequlibrium Green’s functions formalism to demonstrate the signatures of this pathway-entanglement in the difference frequency generation signal. Comparison is made with an analogous incoherent two-photon fluorescence signal.

© 2009 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: November 11, 2008
Revised Manuscript: January 12, 2009
Manuscript Accepted: January 13, 2009
Published: January 15, 2009

Oleksiy Roslyak and Shaul Mukamel, "Photon entanglement signatures in difference-frequency-generation.," Opt. Express 17, 1093-1106 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, "Deterministic Entanglement of Two Trapped Ions," Phys. Rev. Lett. 81, 3631 (1998). [CrossRef]
  2. P. Walther, J. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a nonlocal four-photon state," Nature 429, 158 (2004). [CrossRef] [PubMed]
  3. J. Javanainen and P. Gould, "Linear intensity dependence of a two-photon transition rate," Phys. Rev. A 41, 5088 (1990). [CrossRef] [PubMed]
  4. B. Dayan, "Theory of two-photon interactions with broadband down-converted light and entangled photons," Phys. Rev. A 76, 43813 (2007). [CrossRef]
  5. D. Lee and T. Goodson, "Entangled Photon Absorption in an Organic Porphyrin Dendrimer," J. Phys. Chem. B 110, 25582 (2006). [CrossRef]
  6. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, "Temporal Shaping of Entangled Photons," Phys. Rev. Lett. 94, 073601 (2005). [CrossRef] [PubMed]
  7. C. K. Hong and L. Mandel, "Theory of parametric frequency down conversion of light," Phys. Rev. A 31, 2409 (1985). [CrossRef] [PubMed]
  8. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  9. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2005).
  10. H. Fei, B. Jost, S. Popescu, B. Saleh, and M. Teich, "Entanglement-Induced Two-Photon Transparency," Phys. Rev. Lett. 78, 1679-1682 (1997). [CrossRef]
  11. F. Lissandrin, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Quantum theory of entangled-photon photoemission," Phys. Rev. B 69, 165317 (2004). [CrossRef]
  12. M. Teich and B. Saleh, "Entangled-photon microscopy, spectroscopy, and display," US Patent 5,796,477 (1998).
  13. B. Saleh, B. Jost, H. Fei, and M. Teich, "Entangled-Photon Virtual-State Spectroscopy," Phys. Rev. Lett. 80, 3483 (1998). [CrossRef]
  14. O. Roslyak, C. Marx, and S. Mukamel, "A unified description of sum frequency generation, parametric down conversion and two photon fluorescence." J. Mol. Phys. (submitted) (2008).
  15. C. Marx, U. Harbola, and S. Mukamel, "Nonlinear optical spectroscopy of single, few, and many molecules: Nonequilibrium Green’s function QED approach," Phys. Rev. A 77, 22110 (2008). [CrossRef] [PubMed]
  16. R. Glauber, "The photon theory of optical coherence," Phys. Rev. 130, 2529 (1963). [CrossRef]
  17. R. Glauber, Quantum Theory of Optical Coherence: Selected Papers and Lectures (Wiley-VCH, 2007).
  18. O. Roslyak, C. Marx, and S. Mukamel, "Manipulating quantum pathways of matter with entangled photons," Phys. Rev. B (submitted) (2008).
  19. E. M. Nagasako, S. J. Bentley, R. W. Boyd, and G. S. Agarwal, "Nonclassical two-photon interferometry and lithography with high-gain parametric amplifiers," Phys. Rev. A 64, 043802 (2001). [CrossRef]
  20. S. Mukamel, Principles of nonlinear optical spectroscopy (Oxford University Press New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited