OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 1107–1115

Asymmetric split ring resonators for optical sensing of organic materials

Basudev Lahiri, Ali Z. Khokhar, Richard M. De La Rue, Scott G. McMeekin, and Nigel P. Johnson  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 1107-1115 (2009)
http://dx.doi.org/10.1364/OE.17.001107


View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Asymmetric Split Ring Resonators are known to exhibit resonant modes where the optical electric field is strongest near the ends of the arms, thereby increasing the sensitivity of spectral techniques such as surface enhanced Raman scattering (SERS). By producing asymmetry in the structures, the two arms of the ring produce distinct plasmonic resonances related to their lengths – but are also affected by the presence of the other arm. This combination leads to a steepening of the slope of the reflection spectrum between the resonances that increases the sensitivity of the resonant behavior to the addition of different molecular species. We describe experimental results, supported by simulation, on the resonances of a series of circular split ring resonators with different gap and section lengths – at wavelengths in the mid-infra red regions of the spectrum - and their utilization for highly sensitive detection of organic compounds. We have used thin films of PMMA with different thicknesses, resulting in characteristic shifts from the original resonance. We also demonstrate matching of asymmetric split ring resonators to a molecular resonance of PMMA.

© 2009 Optical Society of America

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(250.0250) Optoelectronics : Optoelectronics
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: November 20, 2008
Revised Manuscript: December 22, 2008
Manuscript Accepted: January 5, 2009
Published: January 15, 2009

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Basudev Lahiri, Ali Z. Khokhar, Richard M. De La Rue, Scott G. McMeekin, and Nigel P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Opt. Express 17, 1107-1115 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-1107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Debus and P. H. Bolivar, "Frequency selective surfaces for high sensitivity terahertz sensing," Appl. Phys. Lett.  91, 184102-1 - 184102-3 (2007). [CrossRef]
  2. C. Debus and P. H. Bolivar, "Terahertz biosensors based on double split ring arrays," Proc. SPIE. 6987, 6987(OU-1-8) (2008).
  3. V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry," Phys. Rev. Lett. 99, 147401-1-4 (2007). [CrossRef]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G.V. Freymann, S. Linden, and M. Wegener, " Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nat. Maters. 7, 543 - 546 (2008). [CrossRef] [PubMed]
  5. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, " Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049 -4051 (2000). [CrossRef]
  6. J. Aizpurua, T. Taubner, F. J. Garcia de Abjo, M. Brehm, and R. Hillenbrand," Substrate-enhanced infrared near-field spectroscopy," Opt. Express 16, 1529-1545 (2008). [CrossRef] [PubMed]
  7. F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, "Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection," Phys. Rev. Lett.  101, 157403-1-4 (2008). [CrossRef] [PubMed]
  8. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications - explosives, weapons and drugs," Semicond. Sci. Technol. 20, S266-280 (2005). [CrossRef]
  9. M. Nagel and H. Kurz, "Corrugated waveguide based genomic biochip for marker-free THz read-out," Int. J. Infrared Millim. Waves 27, 517-529 (2006). [CrossRef]
  10. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, "Terahertz sensing method for protein detection using a thin metallic mesh," Appl. Phys. Lett.  91, 253901-1-3 (2007). [CrossRef]
  11. M. Nagel, P. Bolivar, and H. Kurz, "Modular parallel-plate THz components for cost-efficient biosensing systems," Semicond. Sci. Technol. 20, S281-S285 (2005). [CrossRef]
  12. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, "Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors," Nano Lett. 7, 1256-1263 (2007). [CrossRef] [PubMed]
  13. D. H. Williams and I. Fleming, Spectroscopic methods in Organic Chemistry (McGraw Hill Publications, 2nd Edition, 1973), Chap. 2.
  14. A. Balamurugan, S. Kannan, V. Selvaraj, and S. Rajeswari, "Development and Spectral Characterization of Poly(Methyl Methacrylate) /Hydroxyapatite Composite for Biomedical Applications," Trends Biomater., Artif. Organs 18, 41-45 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited