OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 1116–1125

On chip tunable micro ring resonator actuated by electrowetting

Romi Shamai and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 1116-1125 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a tunable on chip polymer waveguide micro ring resonator (MRR) device. The transmission spectrum and extinction ratio are controlled by electrowetting on dielectric (EWOD), via the application of voltage to a droplet. As a result the droplet covers a portion of the MRR waveguide and changes its effective refractive index. This method can be used for efficiently tuning a variety of on chip optical devices, as it offers high index contrast, electrical control and low power consumption.

© 2009 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(230.7380) Optical devices : Waveguides, channeled
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: November 21, 2008
Revised Manuscript: December 22, 2008
Manuscript Accepted: December 22, 2008
Published: January 15, 2009

Romi Shamai and Uriel Levy, "On chip tunable micro ring resonator actuated by electrowetting," Opt. Express 17, 1116-1125 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Levy and R. Shamai, "Tunable optofluidic devices," Microfluid Nanofluid 4, 97-105 (2007). [CrossRef]
  2. N. Chronis, G. L. Liu, K.H. Jeong, and L. P. Lee "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003). [CrossRef] [PubMed]
  3. L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, "A set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device," Opt. Express 13, 9003-9013 (2005). [CrossRef] [PubMed]
  4. K. Campbell, U. Levy, Y. Fainman, and A. Groisman, "Pressure-driven devices with lithographically fabricated composite epoxy-elastomer membranes," Appl. Phys. Lett. 89, 154105-154107 (2006). [CrossRef]
  5. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2x2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004). [CrossRef]
  6. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, "On-chip microfluidic tuning of an optical microring resonator," Appl. Phys. Lett. 88, 111107-111109 (2006). [CrossRef]
  7. J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101-264103 (2005). [CrossRef]
  8. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 10494-10499 (2006). [CrossRef] [PubMed]
  9. M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007). [CrossRef] [PubMed]
  10. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  11. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A, Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, "Dynamic control of liquid-core/liquid-cladding optical waveguides," PNAS 101, 12434-12438 (2004). [CrossRef] [PubMed]
  12. F.  Mugele and J-C  Baret, "Electrowetting: from basics to applications," J. Phys. Condens. Matter  17, R705-R774 (2005). [CrossRef]
  13. B. Berge and J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000). [CrossRef]
  14. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004). [CrossRef]
  15. R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003). [CrossRef] [PubMed]
  16. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, "Agile wide-angle beam steering with electrowetting microprisms," Opt. Express 14, 6557-6563 (2006). [CrossRef] [PubMed]
  17. P. Mach, T. Krupenkin, S. Yang, and J. A. Rogers, "Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels," Appl. Phys. Lett. 81, 202-204 (2002). [CrossRef]
  18. S. Berry, J. Kedzierski, and B. Abedian, "Low voltage electrowetting using thin fluoroploymer films," J. Colloid Interface Sci. 303, 517-524 (2006). [CrossRef] [PubMed]
  19. K.W. Oh, A. Han, and S. Bhansali, "A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble Microsystems," J. Micromech. Microeng. 12, 187-191 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1678 KB)     
» Media 2: AVI (1618 KB)     
» Media 3: MOV (1964 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited