OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 1144–1158

Dependencies of micro-pillar cavity quality factors calculated with finite element methods

M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 1144-1158 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1722 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present simulation results for optical modes in micro-pillar cavities that were computed with the finite element method and that show good agreement with experimental data. By means of this viable tool various influences on the quality factor of the fundamental mode were calculated: Firstly, the light confinement depends strongly on the absorption of the semiconductor cavity material. Here we were able to determine absolute maximum quality factors achievable in a GaAs/AlAs Bragg micro-pillar cavity. Furthermore, small pillar diameters as well as the inclination of pillar sidewalls show critical features with respect to light confinement. Additional effects of the top and bottom Bragg stacks in the pillar were calculated as well.

© 2009 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.5750) Optical devices : Resonators
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Optical Devices

Original Manuscript: December 16, 2008
Revised Manuscript: January 9, 2009
Manuscript Accepted: January 9, 2009
Published: January 15, 2009

M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, "Dependencies of micro-pillar cavity quality factors calculated with finite element methods," Opt. Express 17, 1144-1158 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  2. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. J. P. Reithmaier, G. S¸ek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dotsemiconductor microcavity system," Nature (London) 432, 197-200 (2004). [CrossRef]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature (London) 432, 200-203 (2004). [CrossRef]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamo˘glu, "A Quantum Dot Single-Photon Turnstile Device," Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
  6. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum Information Processing Using Quantum Dot Spins and Cavity QED," Phys. Rev. Lett. 83, 4204-4207 (1999). [CrossRef]
  7. G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P. Reithmaier, and A. Forchel, "Control of Vertically Coupled InGaAs/GaAs Quantum Dots with Electric Fields," Phys. Rev. Lett. 94, 157401 (2005). [CrossRef] [PubMed]
  8. M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, "Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances," Phys. Rev. B 77, 035108 (2008). [CrossRef]
  9. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, "Localized and delocalized modes in coupled optical micropillar cavities," Opt. Express 15, 8191-8196 (2007). [CrossRef] [PubMed]
  10. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005). [CrossRef]
  11. F. M. Weber, M. Karl, J. Lupaca-Schomber, W. Löffler, S. Li, T. Passow, J. Hawecker, D. Gerthsen, H. Kalt, and M. Hetterich, "Optical modes in pyramidal GaAs microcavities," Appl. Phys. Lett. 90, 161104 (2007). [CrossRef]
  12. M. Karl, T. Beck, S. Li, H. Kalt, and M. Hetterich, "Q-factor and density of optical modes in pyramidal and cone-shaped GaAs microcavities," Appl. Phys. Lett. 92, 231105 (2008). [CrossRef]
  13. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. L¨offler, S. H¨ofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007). [CrossRef]
  14. A. J. Bennett, D. J. P. Ellis, A. J. Shields, P. Atkinson, I. Farrer, and D. A. Ritchie, "Observation of the Purcell effect in high-index-contrast micropillars," Appl. Phys. Lett. 90, 191911 (2007). [CrossRef]
  15. J. Vučković, M. Pelton, A. Scherer, and Y. Yamamoto "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002). [CrossRef]
  16. Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity "Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources," IEEE J. Quantum Electron. 43, 462-472 (2007). [CrossRef]
  17. N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk,"Quality factors of nonideal micro pillars," Appl. Phys. Lett. 91, 011116 (2007). [CrossRef]
  18. Ph. Lalanne, J. P. Hugonin, and J. M Gérard, "Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit," Appl. Phys. Lett. 84, 4726-4728 (2004). [CrossRef]
  19. G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, "Submicron-diameter semiconductor pillar microcavities with very high quality factors," Appl. Phys. Lett. 90, 091120 (2007). [CrossRef]
  20. J. Pomplun, S. Burger, L. Zschiedrich and F. Schmidt, "Adaptive Finite Element Method for Simulation of Optical Nano Structures," Phys. Status Solidi B 244,3419-3434 (2007). [CrossRef]
  21. L. Zschiedrich, R. Klose, A. Schädle and F. Schmidt "A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D," J. Comput Appl. Math. 188, 12-32 (2006). [CrossRef]
  22. L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, "Advanced Finite Element Method for Nano Resonators," in Physics and Simulation of Optoelectronic Devices XIV M. Osinski, F. Henneberger, and Y. Arakawa, eds., Proc. SPIE 6115, 164-174 (2006).
  23. S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, C. Nölscher "Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation," Proc. SPIE 5992, 378-389 (2005).
  24. J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, "Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators," Appl. Phys. Lett. 55, 22-24 (1989). [CrossRef]
  25. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett. 69, 449-451 (1996). [CrossRef]
  26. M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke, and A. Forchel, "Correlated photon pairs from single (In,Ga)As/GaAs quantum dots in pillar microcavities," J. Appl. Phys. 97, 023101 (2005). [CrossRef]
  27. B. Monemar, K. K. Shih, and G. D. Pettit, "Some optical properties of the AlxGa1−xAs alloys system," J. Appl. Phys. 47, 2604-2613 (1976). [CrossRef]
  28. D. D. Sell and H. C. Casey, Jr., "Optical absorption and photoluminescence studies of thin GaAs layers in GaAs-AlxGa1−xAs double heterostructures," J. Appl. Phys. 45, 800-807 (1974). [CrossRef]
  29. M. D. Sturge, "Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV," Phys. Rev. 127, 768-773 (1962). [CrossRef]
  30. WVase32, J. A. Woollam Co. Inc., Lincoln, USA.
  31. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006). [CrossRef]
  32. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystalslab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005). [CrossRef]
  33. T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, H. Gotoh, D. Ding, S. R. Johnson, E. Kuramochi, M. Notomi, and H. Nakano, "Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities," in Proceedings of IEEE International Conference on Indium Phosphide and Related Materials (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 490-492. [CrossRef]
  34. M. Benyoucef, S. M. Ulrich, P. Michler, J. Wiersig, F. Jahnke and A. Forchel, "Enhanced correlated photon pair emission from a pillar microcavity," New J. Phys. 6, 91 (2004). [CrossRef]
  35. J. M. Gérard, B. Sermarge, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited