OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 405–418

Origin of the bound states of pulses in the stretched-pulse fiber laser

Michel Olivier and Michel Piché  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 405-418 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (668 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple analytical model of the mechanism responsible for the formation of bound states of pulses in the stretched-pulse fiber laser is given. The proposed model is based on a noncoherent interaction occurring between the pulses near their position of maximum stretch within the dispersion-managed cavity, where the pulses possess a large linear chirp. This nonlinear interaction is due to the combined effects of the cross-phase modulation and the cross-amplitude modulation caused by the nonlinear gain associated with the mode-locking mechanism used in the laser. This model predicts the existence of a single bound state with a separation of the order of the pulsewidth at maximum stretch, a result consistent with simulations and experiments.

© 2009 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 3, 2008
Revised Manuscript: December 22, 2008
Manuscript Accepted: December 25, 2008
Published: January 5, 2009

Michel Olivier and Michel Piché, "Origin of the bound states of pulses in the stretched-pulse fiber laser," Opt. Express 17, 405-418 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Akhmediev, J. M. Soto-Crespo, M. Grapinet, and Ph. Grelu, "Dissipative soliton interactions inside a fiber laser cavity," Opt. Fiber Technol. 11, 209-228 (2005). [CrossRef]
  2. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, "Soliton interaction in a fiber ring laser," Phys. Rev. E 72, 1-10 (2005). [CrossRef]
  3. M. Stratmann, T. Pagel, and F. Mitschke, "Experimental Observation of Temporal Soliton Molecules," Phys. Rev. Lett.,  95, 143902 (2005). [CrossRef] [PubMed]
  4. Ph. Grelu, J. Béal, and J. M. Soto-Crespo, "Soliton pairs in a fiber laser: from anomalous to normal average dispersion regime," Opt. Express 11,2238-2243 (2003). [CrossRef] [PubMed]
  5. Ph. Grelu, and N. Akhmediev, "Group interactions of dissipative solitons in a laser cavity: the case 2+1," Opt. Express 12, 3184-3189 (2004). [CrossRef] [PubMed]
  6. G. Martel, C. Chédot, V. Réglier, A. Hideur, B. Ortaç, and Ph. Grelu, "On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser," Opt. Lett. 32, 343-345 (2007). [CrossRef] [PubMed]
  7. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ilday, "Generation of parabolic bound pulses from a Yb-fiber laser," Opt. Express 14, 6075-6083 (2006). [CrossRef] [PubMed]
  8. M. Olivier, V. Roy, M. Piché, and F. Babin, "Pulse collisions in the stretched-pulse fiber laser," Opt. Lett. 29, 1461-1463 (2004). [CrossRef] [PubMed]
  9. M. Olivier, V. Roy, and M. Piché, "Influence of the Raman effect on bound states of dissipative solitons," Opt. Express 14, 9728-9742 (2006). [CrossRef] [PubMed]
  10. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-femtosecond pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  11. M. Hofer, M. E. Fermann, F. Haberl, and M. H. Ober, "Characterization of ultrashort pulse formation in passively mode-locked fiber lasers," IEEE J. Quantum Electron. 28, 720-728 (1992). [CrossRef]
  12. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 27.
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995), Chap. 7.
  14. P. M. Lushnikov, "Oscillating tails of a dispersion-managed soliton," J. Opt. Soc. Am. B 21, 1913-1918 (2004). [CrossRef]
  15. M. Olivier, V. Roy, and M. Piché, "Third-order dispersion and bound states of pulses in a fiber laser," Opt. Lett. 31, 580-582 (2006). [CrossRef] [PubMed]
  16. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber lasers: theory and experiment," IEEE J. Quantum. Electron. 31, 591-598 (1995). [CrossRef]
  17. A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 1-4 (2005). [CrossRef]
  18. F. M. Mitschke, and L. F. Mollenauer, "Experimental observation of interaction forces between solitons in optical fibers," Opt. Lett. 12, 355-357 (1987). [CrossRef] [PubMed]
  19. J. N. Kutz, B. C. Collings, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletion and recovery," IEEE J. Quantum Electron. 34, 1749-1757 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited