OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 419–425

Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection

Frank C. De Lucia, Jr., Jennifer L. Gottfried, and Andrzej W. Miziolek  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 419-425 (2009)
http://dx.doi.org/10.1364/OE.17.000419


View Full Text Article

Enhanced HTML    Acrobat PDF (814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential technique for trace explosive detection. Typically LIBS is performed using nanosecond laser pulses. For this work, we have investigated the use of femtosecond laser pulses for explosive residue detection at two different fluences. Femtosecond laser pulses have previously been shown to provide several advantages for laser ablation and other LIBS applications. We have collected LIBS spectra of several bulk explosives and explosive residues at different pulse durations and energies. In contrast to previous femtosecond LIBS spectra of explosives, we have observed atomic emission peaks for the constituent elements of explosives – carbon, hydrogen, nitrogen, and oxygen. Preliminary results indicate that several advantages attributed to femtosecond pulses are not realized at higher laser fluences.

© 2009 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(320.7090) Ultrafast optics : Ultrafast lasers
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: October 21, 2008
Revised Manuscript: December 9, 2008
Manuscript Accepted: December 11, 2008
Published: January 6, 2009

Citation
Frank C. De Lucia, Jennifer L. Gottfried, and Andrzej W. Miziolek, "Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection," Opt. Express 17, 419-425 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. C. De LuciaJr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues," Appl. Opt. 47, G112-G121 (2008). [CrossRef]
  2. Q1. F. C. De LuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination," Spectrochim. Acta, Part B 62, 1399-1404 (2007). [CrossRef]
  3. J. L. Gottfried, F. C. De LuciaJr., C. A. Munson, and A. W. Miziolek, "Strategies for residue explosives detection using laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 23, 205-216 (2008). [CrossRef]
  4. J. P. Colombier, P. Combis, F. Bonneau, R. L. Harzic, and E. Audouard, "Hydrodynamic simulations of metal ablation by femtosecond laser irradiation," Phys. Rev. B 71, 165406 (2005). [CrossRef]
  5. X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997). [CrossRef]
  6. Q2. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, "A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples," Spectrochim. Acta, Part B 55, 1771-1785 (2000). [CrossRef]
  7. Q3. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, and Y. von Kaenel, "Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys," Spectrochim. Acta, Part B 56, 987-1002 (2001). [CrossRef]
  8. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, "Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps," Appl. Surf. Sci. 249, 322-331 (2005). [CrossRef]
  9. Q4. S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A 61, 33 (1995). [CrossRef]
  10. A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, "Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses," Appl. Surf. Sci. 138-139, 311-314 (1999). [CrossRef]
  11. B. Le Drogoff, F. Vidal, Y. von Kaenel, M. Chaker, T. W. Johnston, S. Laville, M. Sabsabi, and J. Margot, "Ablation of aluminum thin films by ultrashort laser pulses," J. Appl. Phys. 89, 8247-8252 (2001). [CrossRef]
  12. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997). [CrossRef]
  13. Q5. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, "Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser," Appl. Phys. A 69, S359-S366 (1999). [CrossRef]
  14. E. L. Gurevich and R. Hergenroeder, "Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives," Appl. Spectrosc. 61, 233A-242A (2007). [CrossRef] [PubMed]
  15. Q6. V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, and R. Hergenroder, "Depth profiling of multi-layer samples using femtosecond laser ablation," J. Anal. At. Spectrom. 16, 616-321 (2001). [CrossRef]
  16. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy Dependence of Emission Intensity and Temperature in a LIBS Plasma Using Femtosecond Excitation," Appl. Spectrosc. 55, 286-291 (2001). [CrossRef]
  17. Q7. J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, "Time-resolved and time-integrated single-shot laser-induced plasma experiments using nanosecond and femtosecond laser pulses," Spectrochim. Acta, Part B 59, 1033-1039 (2004). [CrossRef]
  18. A. W. Schill, D. A. Heaps, D. N. Stratis-Cullum, B. R. Arnold, and P. M. Pellegrino, "Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy," Opt. Express 15, 14044-14056 (2007). [CrossRef] [PubMed]
  19. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime," J. Appl. Phys. 99, 84701 (2006). [CrossRef]
  20. M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy," Appl. Phys. Lett. 89, 163903 (2006). [CrossRef]
  21. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy," Appl. Phys. Lett. 88, 063901 (2006). [CrossRef]
  22. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, "Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution," Appl. Phys. B 77, 391-397 (2003). [CrossRef]
  23. Q8. P. Pouli, K. Melessanaki, A. Giakoumaki, V. Argyropoulos, and D. Anglos, "Measuring the thickness of protective coatings on historic metal objects using nanosecond and femtosecond laser induced breakdown spectroscopy depth profiling," Spectrochim. Acta, Part B 60, 1163 (2005). [CrossRef]
  24. P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Woeste, "Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes," J. Anal. At. Spectrom. 19, 437-444 (2004). [CrossRef]
  25. Y. Dikmelik, C. McEnnis, and J. B. Spicer, "Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene," Opt. Express 16, 5332 (2008). [CrossRef] [PubMed]
  26. B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. W. Johnston, S. Laville, and F. Vidal, "Influence of the Laser Pulse Duration on Spectrochemical Analysis of Solids by Laser-Induced Plasma Spectroscopy," Appl. Spectrosc. 58, 122-129 (2004). [CrossRef] [PubMed]
  27. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134 (1996). [CrossRef]
  28. Q9. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, "Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses," Appl. Phys. A 80, 1589-1593 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited