OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 472–493

Skyless polarimetric calibration and visibility enhancement

Einav Namer, Sarit Shwartz, and Yoav Y. Schechner  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 472-493 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Outdoor imaging in haze is plagued by poor visibility. A major problem is spatially-varying reduction of contrast by airlight, which is scattered by the haze particles towards the camera. However, images can be compensated for haze, and even yield a depth map of the scene. A key step in such scene recovery is subtraction of the airlight. In particular, this can be achieved by analyzing polarization-filtered images. This analysis requires parameters of the airlight, particularly its degree of polarization (DOP). These parameters were estimated in past studies by measuring pixels in sky areas. However, the sky is often unseen in the field of view. This paper derives several methods for estimating these parameters, when the sky is not in view. The methods are based on minor prior knowledge about a couple of scene points. Moreover, we propose blind estimation of the DOP, based on the image data. This estimation is based on independent component analysis (ICA). The methods were demonstrated in field experiments.

© 2009 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(100.3020) Image processing : Image reconstruction-restoration
(150.1488) Machine vision : Calibration
(110.5405) Imaging systems : Polarimetric imaging
(290.5855) Scattering : Scattering, polarization

ToC Category:
Imaging Systems

Original Manuscript: March 3, 2008
Revised Manuscript: August 3, 2008
Manuscript Accepted: August 7, 2008
Published: January 7, 2009

Einav Namer, Sarit Shwartz, and Yoav Y. Schechner, "Skyless polarimetric calibration and visibility enhancement," Opt. Express 17, 472-493 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. S. Kopeika, A System Engineering Approach to Imaging, SPIE Press, Bellingham (1998).
  2. R. T. Tan, N. Pettersson and L. Petersson, "Visibility enhancement for roads with foggy or hazy scenes," In Proc. IEEE Intelligent Vehicles Symposium 19-24 (2007).
  3. R. C. Henry, S. Mahadev, S. Urquijo, and D. Chitwood "Color perception through atmospheric haze," J. Opt. Soc. Am. A 17, 831-835 (2000). [CrossRef]
  4. J. S. Jaffe, "Computer modelling and the design of optimal underwater imaging systems," IEEE J. Oceanic Eng. 15, 101-111 (1990). [CrossRef]
  5. D. M. Kocak, F. R. Dalgleish, F. M. Caimi and Y. Y. Schechner, "A focus on recent developments and trends in underwater imaging," MTS Journal 42, 52-67 (2008).
  6. Y. Y. Schechner and N. Karpel, "Recovery of underwater visibility and structure by polarization analysis," IEEE J. Oceanic Eng. 30, 570-587 (2005). [CrossRef]
  7. P. C. Y. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, "Improving visibility depth in passive underwater imaging by use of polarization," Appl. Opt. 42, 2794-2803 (2003). [CrossRef] [PubMed]
  8. D. B. Chenault, J. L. Pezzaniti, "Polarization imaging through scattering media," In Proc. SPIE 4133, 124-133 (2000).
  9. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997). [CrossRef] [PubMed]
  10. X. Gan, S. P. Schilders and M. Gu, "Image enhancement through turbid media under a microscope by use of polarization gating method," J. Opt. Soc. Am. A 16, 2177-2184 (1999). [CrossRef]
  11. S. Harsdorf, R. Reuter, and S. Tönebön, "Contrast-enhanced optical imaging of submersible targets," In Proc. SPIE 3821, 378-383 (1999).
  12. M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408 (1999). [CrossRef]
  13. S. P. Schilders, X. S. Gan, and M. Gu, "Resolution improvement in microscopic imaging through turbid media based on differential polarization gating," Appl. Opt. 37, 4300-4302 (1998). [CrossRef]
  14. J. S. Tyo, M. P. Rowe, E. N. PughJr., and N. Engheta, "Target detection in optically scattering media by polarization-difference imaging," Appl. Opt. 35, 1855-1870 (1996). [CrossRef] [PubMed]
  15. J. S. Tyo, "Enhancement of the point-spread function for imaging in scattering media by use of polarizationdifference imaging," J. Opt. Soc. Am. A 17, 1-10 (2000). [CrossRef]
  16. K. M. Yemelyanov, S. S. Lin, E. N. Pugh, Jr., and N. Engheta, "Adaptive algorithms for two-channel polarization sensing under various polarization statistics with nonuniform distributions," Appl. Opt. 45, 5504-5520 (2006). [CrossRef] [PubMed]
  17. G. Horváth and D. Varjú, Polarized Light in Animal Vision, Springer-Verlag, Berlin (2004).
  18. N. Shashar, S. Sabbah, and T. W. Cronin, "Transmission of linearly polarized light in seawater: implications for polarization signaling," J. Exper. Biology,  207, 3619-3628 (2004). [CrossRef]
  19. R. Wehner, "Polarization vision a uniform sensory capacity?," J. Exper. Biology 204, 2589-2596 (2001).
  20. F. Cozman and E. Kroktov, "Depth from scattering," In Proc. IEEE CVPR, 801-806 (1997).
  21. K. Tan and J. P. Oakley, "Physics-based approach to color image enhancement in poor visibility conditions," J. Opt. Soc. Am. A 18, 2460-2467 (2001). [CrossRef]
  22. E. Namer and Y. Y. Schechner, "Advanced visibility improvement based on polarization filtered images," In Proc. SPIE 5888, 36-45 (2005).
  23. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, "Polarization-based vision through haze," Appl. Opt. 42, 511-525 (2003). [CrossRef] [PubMed]
  24. D. Miyazaki, M. Saito, Y. Sato and K. Ikeuchi,"Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths," J. Opt. Soc. Am. A 19, 687-694 (2002). [CrossRef]
  25. V. Gruev, A. Ortu, N. Lazarus, J. V. der Spiegel and N. Engheta, "Fabrication of a dual-tier thin film micropolarization array," Opt. Express 15, 4994-5007 (2007). [CrossRef] [PubMed]
  26. N. Gupta, L. J. Denes, M. Gottlieb, D. R. Suhre, B. Kaminsky, and P. Metes, "Object detection with a fieldportable spectropolarimetric imager," Appl. Opt. 40, 6626-6632 (2001). [CrossRef]
  27. C. K. Harnett and H. G. Craighead, "Liquid-crystal micropolarizer array for polarization-difference imaging," Appl. Opt. 41, 1291-1296 (2002). [CrossRef] [PubMed]
  28. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, "Review of passive imaging polarimetry for remote sensing applications," Appl. Opt. 45, 5453-5469 (2006). [CrossRef] [PubMed]
  29. J. S. Tyo and H. Wei, "Optimizing imaging polarimeters constructed with imperfect optics," Appl. Opt. 45, 5497-5503 (2006). [CrossRef] [PubMed]
  30. J. Wolfe, R. Chipman, "High speed imaging polarimeter," In Proc. SPIE 5158, 24-32 (2003).
  31. L. B. Wolff, "Polarization camera for computer vision with a beam splitter,"J. Opt. Soc. Am. A 11, 2935-2945 (1994). [CrossRef]
  32. C. F. Bohren and A. B. Fraser, "At what altitude does the horizon cease to be visible?," American Journal of Physics 54, 222-227 (1986). [CrossRef]
  33. D. K. Lynch, "Step brightness changes of distant mountain ridges and their perception," Appl. Opt. 30, 3508-3513 (1991). [CrossRef] [PubMed]
  34. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles, John Willey & Sons (1975).
  35. S. K. Nayar and S. G. Narasimhan, "Vision in bad weather," Proc. IEEE ICCV, 820-827 (1999).
  36. For clarity of display, the images shown in this paper have undergone the same standard contrast stretch. This operation was done only towards the display. The algorithms described in the paper were run on raw, unstretched data. The data had been acquired using a Nikon D-100 camera, which has a linear radiometric response. The mounted zoom lens used with the camera was set to focal length of ¼ 200mm, except for Fig. 9 in which it was ¼ 85mm. The camera was pointed at or slightly below the horizon.
  37. H. Farid and E. H. Adelson, "Separating reflections from images by use of independent component analysis," J. Opt. Soc. Amer A 16, 2136-2145 (1999). [CrossRef]
  38. S. Shwartz, M. Zibulevsky, and Y. Y. Schechner, "Fast kernel entropy estimation and optimization," Signal Processing 85, 1045-1058 (2005). [CrossRef]
  39. S. Umeyama and G. Godin, "Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images," IEEE Trans. PAMI 26, 639-647 (2004). [CrossRef]
  40. D. Nuzilland, S. Curila, and M. Curila, "Blind separation in low frequencies using wavelet analysis, application to artificial vision," In Proc. ICA, 77-82 (2003).
  41. S. Shwartz, E. Namer, and Y. Y. Schechner, "Blind haze separation," In Proc. IEEE CVPR 2, 1984-1991 (2006).
  42. E. H. Adelson, "Lightness perception and lightness illusions," in The New Cognitive Neuroscience, 2nd ed. ch. 24 339-351, MIT Preess, Cambridge (2000).
  43. R. A. Chipman, "Depolarization index and the average degree of polarization," Appl. Opt. 44, 2490-2495 (2005). [CrossRef] [PubMed]
  44. S. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Computation 7, 1129-1159 (1995). [CrossRef] [PubMed]
  45. J.-F. Cardoso, "Blind signal separation: statistical principles," Proc. IEEE 86, 2009-2025 (1998). [CrossRef]
  46. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley and Sons, New York (2001). [CrossRef]
  47. D. T. Pham and P. Garrat, "Blind separation of a mixture of independent sources through a quasi-maximum likelihood approach," IEEE Trans. Signal Processing,  45, 1712-1725 (1997). [CrossRef]
  48. P. Kisilev, M. Zibulevsky, and Y. Y. Zeevi, "Multiscale framework for blind source separation," J. Machine Learning Research 4, 1339-1364 (2004).
  49. E. P. Simoncelli, "Statistical models for images: Compression, restoration and synthesis," In Proc. Conf. Sig. Sys. and Computers, 673-678 (1997).
  50. An additional ICA ambiguity is permutation, which refers to mutual ordering of sources. This ambiguity does not concern us at all. The reason is that our physics-based formulation dictates a special form for the matrix W, and thus its rows are not mutually interchangeable.
  51. T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley and Sons, New York (1991). [CrossRef]
  52. T. Treibitz and Y. Y. Schechner, "Instant 3Descatter," In Proc. IEEE CVPR 1861-1868 (2006).
  53. P. Bofill and M. Zibulevsky, "Underdetermined blind source separation using sparse representations," Signal Processing 81, 2353-2362 (2001). [CrossRef]
  54. M. Zibulevsky and B. A. Pearlmutter, "Blind source separation by sparse decomposition in a signal dictionary," Neural Computation Archive  13, 863 - 882 (2001). [CrossRef]
  55. Y. Li, A. Cichocki, and S. Amari, "Analysis of sparse representation and blind source separation," Neural Computation 16, 1193-1234 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited