OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 552–557

Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide

Alexandre Baron, Aleksandr Ryasnyanskiy, Nicolas Dubreuil, Philippe Delaye, Quynh Vy Tran, Sylvain Combrié, Alfredo de Rossi, Robert Frey, and Gerald Roosen  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 552-557 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear propagation experiments in GaAs photonic crystal waveguides (PCW) were performed, which exhibit a large enhancement of third order nonlinearities, due to light propagation in a slow mode regime, such as two-photon absorption (TPA), optical Kerr effect and refractive index changes due to free-carriers generated by TPA. A theoretical model has been established that shows a very good quantitative agreement with experimental data and demonstrates the important role that the group velocity plays. These observations give a strong insight into the use of PCWs for optical switching devices.

© 2009 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.4180) Nonlinear optics : Multiphoton processes
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Nonlinear Optics

Original Manuscript: October 15, 2008
Revised Manuscript: November 28, 2008
Manuscript Accepted: November 29, 2008
Published: January 7, 2009

Alexandre Baron, Aleksandr Ryasnyanskiy, Nicolas Dubreuil, Philippe Delaye, Quynh Vy Tran, Sylvain Combrié, Alfredo de Rossi, Robert Frey, and Gerald Roosen, "Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide," Opt. Express 17, 552-557 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. G. R. Broderick, P. Millar, D. J. Richardson, J. S. Aitchson, R. De La Rue, and T. Krauss, "Spectral features associated with nonlinear pulse compression in Bragg gratings," Opt. Lett. 25, 740-742 (2000). [CrossRef]
  2. M. Astic, P. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008). [CrossRef]
  3. L. Razzari, D. Träger, M. Astic, P. Delaye, R. Frey, G. Roosen, and R. André, "Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals," Appl. Phys. Lett. 86, 231106 (2005). [CrossRef]
  4. M. Roussey, F. I. Baida, and M. -P. Bernal, "Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal," J. Opt. Soc. Am. B 24, 1416-1422 (2007). [CrossRef]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). [CrossRef] [PubMed]
  6. Y. Tanaka, H. Kawashima, N. Ikeda, Y. Sugimoto, H. Kuwatsuka, T. Hasama, and H. Ishikawa, "Optical bistable operations in AlGaAs-based photonic crystal slab microcavity at telecommunication wavelengths," IEEE Photon. Technol. Lett. 18, 1996-1998 (2006). [CrossRef]
  7. E. Weidner, S. Combrié, A. de Rossi, N. -V. -Q. Tran, and S. Cassette, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," App. Phys. Lett. 90, 101118 (2007). [CrossRef]
  8. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm," Opt. Lett. 33, 1908-1910 (2008). [CrossRef] [PubMed]
  9. H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, "Self-phase modulation in photonic-crystal-slab line-defect waveguides," App. Phys. Lett. 90, 231102 (2007). [CrossRef]
  10. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow-light and tailored dispersion," Opt. Express 14, 9444-9450 (2006). [CrossRef] [PubMed]
  11. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219-26 (2007). [CrossRef] [PubMed]
  12. S. Kubon, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981-2983 (2007). [CrossRef]
  13. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of the flat band slow light in photonic crystal waveguides," Opt. Express 16, 6227-6232 (2008). [CrossRef] [PubMed]
  14. S. Combrié, A. de Rossi, L. Morvan, S. Tonda, S. Cassette, D. Dolfi, and A. Talneau, "Time-delay measurement in singlemode, low-loss photonic crystal waveguides," Electron. Lett. 42, 86 (2006). [CrossRef]
  15. S. Combrié, N-V-Q. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouën, R. Gabet, and A. Talneau, "Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry," Appl. Phys. Lett. 90, 231104 (2007). [CrossRef]
  16. R. Frey, Ph. Delaye, G. Roosen, Nanophotonic, H.Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levenson, (Eds. ISTE, 2006), chapter 6.
  17. P. Delaye, M. Astic, R. Frey, and G. Roosen, "Transfer-matrix modeling of four-wave mixing at the band edge of a one-dimensional photonic crystal," J. Opt. Soc. Am. B 22, 2494-2504 (2005). [CrossRef]
  18. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40, 2666-2670 (2007). [CrossRef]
  19. A. Ryasnyanskiy, N. Dubreuil, P. Delaye, G. Roosen, "Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering elements," J. Europ. Opt. Soc. Rap. Public. 3, 08037 (2008). [CrossRef]
  20. S. Combrié, E. Weidner, A. de Rossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, "Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system," Opt. Express 14, 7353-7361 (2006). [CrossRef] [PubMed]
  21. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007). [CrossRef] [PubMed]
  22. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," App. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  23. D. E. Aspnes, "Recombination at semiconductor surfaces and interfaces", Surface Science 132, 406 (1983). [CrossRef]
  24. T. G. Ulmer, R. K. Tan, Z. Zhou, S. E. Ralph, R. P. Kenan, C. M. Verber, and A. J. SpringThorpe, "Two-photon absorption-induced self-phase modulation in GaAs-AlGaAs waveguides for surface-emitted second-harmonic generation," Opt. Lett. 24, 756-758 (1999). [CrossRef]
  25. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992). [CrossRef]
  26. J. S. Blakemore, "Semiconductoring and other major properties of gallium arsenide," J. Appl. Phys. 53, R123 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited