OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 585–591

Numerical study on self-similar pulses in mode-locking fiber laser by coupled Ginzburg- Landau equation model

Ting Lei, Chenghou Tu, Fuyun Lu, Yixin Deng, and Enbang Li  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 585-591 (2009)
http://dx.doi.org/10.1364/OE.17.000585


View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model is established to study the self-similar pulses in nonlinear polarization evolution (NPE) mode-locked fiber lasers. The propagation of pulse in single mode fibers and gain fibers are described by coupled Ginzburg- Landau equation (GLE). Two wave plates and a polarizer are considered to realize the NPE mechanism in simulation. This model describes the laser completely and provides some useful pulses’ information. In our simulation the laser generates high quality self-similar pulses output. The region of steady self-similar pulses operation is found. The polarization states of different parts across the pulse are simulated along the laser cavity. It is found that polarization states across the pulse are modulated from elliptical to almost circular before the pulse passing through the polarizer.

© 2009 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3560) Lasers and laser optics : Lasers, ring
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 3, 2008
Revised Manuscript: December 21, 2008
Manuscript Accepted: January 6, 2009
Published: January 7, 2009

Citation
Ting Lei, Fuyun Lu, Chenghou Tu, Yixin Deng, and Enbang Li, "Numerical study on self-similar pulses in mode-locking fiber laser by coupled Ginzburg-Landau equation model," Opt. Express 17, 585-591 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-585


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992). [CrossRef]
  2. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave breaking in nonlinear-optical fibers," J. Opt. Soc. Am. B 9, 1358-1361 (1992). [CrossRef]
  3. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, "Efficient frequency doubling of a femtosecond fiber laser," Opt. Lett. 21, 1759-1761 (1996). [CrossRef] [PubMed]
  4. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006). [CrossRef] [PubMed]
  5. A. Chong, W. H. Renninger, and F. W. Wise, "Environmentally stable all-normal-dispersion femtosecond fiber laser," Opt. Lett. 33, 1071-1073 (2008). [CrossRef] [PubMed]
  6. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20nJ," Opt. Lett. 32, 2408-2410 (2007). [CrossRef] [PubMed]
  7. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave-breaking-free pulses in nonlinear-optical fibers," J. Opt. Soc. Am. B 10, 1185- 1190 (1993). [CrossRef]
  8. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  9. A. Komarov, H. Leblond, and F. Sanchez, "Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation," Phys. Rev. A (Atomic, Molecular, and Optical Physics)  72, 063811-063817 (2005). [CrossRef]
  10. B. G. Bale, J. N. Kutz, and F. Wise, "Analytic theory of self-similar mode-locking," Opt. Lett. 33, 911-913 (2008). [CrossRef] [PubMed]
  11. K. M. Spaulding, D. H. Yong, A. D. Kim, and J. N. Kutz, "Nonlinear dynamics of mode-locking optical fiber ring lasers," J. Opt. Soc. Am. B 19, 1045-1054 (2002). [CrossRef]
  12. C. H. Tu, Z. Li, T. Lei, Y. N. LI, W.G. Guo, D. Wei, H. Zhu, S. G. Zhang, and F.Y. Lu, "Pulse evolution characteristics in self-similar mode-locked fiber laser," Chin. Phys. Lett. 24, 3175-3178 (2007). [CrossRef]
  13. A. Latkin, and S. Turitsyn, "Semi-Analytical Description of Parabolic Pulse Generation in the Normal-Dispersion Fibre Amplifiers," in Proceedings of IEEE International Conference on Transparent Optical Networks Conference (IEEE, 2006), pp. 259-262.
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), 203-209.
  15. C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers," IEEE J. Quantum Electron 23,174-176 (1987). [CrossRef]
  16. D. S. Kliger, and J. W. Lewis, Polarized light in optics and spectroscopy (Academic, 1990).
  17. M. E. Ferman, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000). [CrossRef]
  18. J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, Phys. "Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique," Phys. Rev. E 74, 046605 (2006). [CrossRef]
  19. A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics)  72, 025604-025604 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited