OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 603–610

Maximizing Young’s fringe visibility under unitary transformations for mean-square coherent light

R. Martínez-Herrero and P. M. Mejías  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 603-610 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Given the values of the degree of polarization of the fields at the pinholes in a Young interferometer, the maximum attainable visibility under unitary transformations is determined when the illuminating beam is mean-square light. Analytical expressions are also obtained for both the field vector (in the mean-square sense) and the cross-spectral density matrix associated with this kind of beams. A comparative summary is also provided of the main characteristics of well-known types of random electromagnetic fields frequently handled in the literature.

© 2009 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1640) Coherence and statistical optics : Coherence

ToC Category:
Coherence and Statistical Optics

Original Manuscript: November 5, 2008
Revised Manuscript: December 9, 2008
Manuscript Accepted: December 11, 2008
Published: January 7, 2009

R. Martínez-Herrero and P. M. Mejias, "Maximizing Young’s fringe visibility under unitary transformations for mean-square coherent light," Opt. Express 17, 603-610 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A 312, 263-267 (2003). [CrossRef]
  2. J. Tervo, T. Setälä and A. T. Friberg, "Degree of coherence of electromagnetic fields," Opt. Express 11, 1137-1142 (2003). [CrossRef] [PubMed]
  3. M. Mujat and A. Dogariu, "Polarimetric and spectral changes in random electromagnetic fields," Opt. Lett. 28, 2153-2155 (2003). [CrossRef] [PubMed]
  4. T. Setälä, J. Tervo, and A. T. Friberg, "Complete coherence in the space-frequency domain," Opt. Lett. 29, 328-330 (2004). [CrossRef] [PubMed]
  5. H. Roychowdhury and E. Wolf, "Young’s interference experiment with light of any state of coherence and polarization," Opt. Commun. 252, 268-274 (2005). [CrossRef]
  6. Ph. Réfrégier and F. Goudail, "Invariant degrees of coherence of partially polarized light," Opt. Express 13, 6051-6060 (2005). [CrossRef] [PubMed]
  7. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, "Effect of coherence on the degree of polarization in a young interference pattern," Opt. Lett. 31, 688-690 (2006). [CrossRef] [PubMed]
  8. Ph. Réfrégier and A. Roueff, "Coherence polarization filtering and relation with intrinsic degrees of coehrence," Opt. Lett. 31, 1175-1177 (2006). [CrossRef] [PubMed]
  9. Ph. Réfrégier and A. Roueff, "Linear relations of partially polarized and coherent electromagnetic fields," Opt. Lett. 31, 2827-2829 (2006). [CrossRef] [PubMed]
  10. F. Gori, M. Santarsiero, and R. Borghi, "Vector mode analysis of a Young interferometer," Opt. Lett. 31, 858-860 (2006). [CrossRef] [PubMed]
  11. Y. Li, H. Lee, and E. Wolf, "Spectra, coherence and polarization in Young’s interference pattern formed by stochastic electromagnetic beams," Opt. Commun. 265, 63-72 (2006). [CrossRef]
  12. F. Gori, M. Santarsiero, and R. Borghi, "Maximizing Young’s fringe visibility through reversible optical transformations," Opt. Lett. 32,588-590 (2007). [CrossRef] [PubMed]
  13. Ph. Réfrégier and A. Roueff, "Intrinsic Coherence: A New Concept in Polarization and Coherence Theory," Opt. Photon. News 18, 30-35 (2007). [CrossRef]
  14. Ph. Réfrégier and A. Roueff, "Visibility interference fringes optimization on a single beam in the case of partially polarized and partially coherent light," Opt. Lett. 32,1366-1368 (2007). [CrossRef] [PubMed]
  15. R. Martínez-Herrero and P. M. Mejías, "Maximum visibility under unitary transformations in two-pinhole interference for electromagnetic fields," Opt. Lett. 32,1471-1473 (2007). [CrossRef] [PubMed]
  16. R. Martínez-Herrero and P. M. Mejías, "Relation between degrees of coherence for electromagnetic fields," Opt. Lett. 32, 1504-1506 (2007). [CrossRef] [PubMed]
  17. R. Martínez-Herrero and P. M. Mejías, "Electromagnetic fields that remain totally polarized under propagation," Opt. Commun. 279, 20-22 (2007). [CrossRef]
  18. E. Wolf, "Polarization invariance in beam propagation," Opt. Lett. 32, 3400-3401 (2007). [CrossRef] [PubMed]
  19. M. Santarsiero, "Polarization invariance in a Young interferometer," J. Opt. Soc. Am. A 24, 3493-3499 (2007). [CrossRef]
  20. R. Martínez-Herrero and P. M. Mejías, "On the vectorial fields with position-independent stochastic behavior," Opt. Lett. 33, 195-197 (2008). [CrossRef] [PubMed]
  21. Ph. Réfrégier, "Mean-square coherent light," Opt. Lett. 33, 1551-1553 (2008). [CrossRef] [PubMed]
  22. R. Martínez-Herrero and P. M. Mejías, "Equivalence between optimum Young’s fringe visibility and position-independent stochastic behaviour of electromagnetic fields," J. Opt. Soc. Am. A 25, 1902-1905 (2008). [CrossRef]
  23. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
  24. J. Perina, Coherence of Light (Van Nostrand Reinhold Co., London, 1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited